
Proceedings of Machine Learning Research [182]:1–25, 2022 Machine Learning for Healthcare

Learning Optimal Summaries of Clinical Time-series with
Concept Bottleneck Models

Carissa Wu carissawu@college.harvard.edu
Harvard University

Sonali Parbhoo s.parbhoo@imperial.ac.uk
Imperial College London, Harvard University

Marton Havasi mhavasi@seas.harvard.edu
Harvard University

Finale Doshi-Velez finale@seas.harvard.edu

Harvard University

Abstract

Despite machine learning models’ state-of-the-art performance in numerous clinical predic-
tion and intervention tasks, their complex black-box processes pose a great barrier to their
real-world deployment. Clinical experts must be able to understand the reasons behind a
model’s recommendation before taking action, as it is crucial to assess for criteria other
than accuracy, such as trust, safety, fairness, and robustness. In this work, we enable hu-
man inspection of clinical timeseries prediction models by learning concepts, or groupings
of features into high-level clinical ideas such as illness severity or kidney function. We also
propose an optimization method which then selects the most important features within
each concept, learning a collection of sparse prediction models that are sufficiently expres-
sive for examination. On a real-world task of predicting vasopressor onset in ICU units,
our algorithm achieves predictive performance comparable to state-of-the-art deep learning
models while learning concise groupings conducive for clinical inspection.1

1. Introduction

State-of-the-art machine learning models have demonstrated strong predictive performance
in several high-stakes clinical contexts, such as predicting in-hospital mortality risk (Awad
et al., 2017; Ghassemi et al., 2015; Rajkomar et al., 2018; Purushotham et al., 2018), sepsis
onset (Fleuren et al., 2020; Nemati et al., 2018; Futoma et al., 2017), respiratory distress
(Zeiberg et al., 2019; Le et al., 2020), and deterioration due to COVID-19 (Wynants et al.,
2020). However, for such models to be adopted in practice, it is crucial to assess performance
with criteria other than accuracy, such as safety, fairness, generalizability, and robustness
(Hoffman et al., 2016; Bolukbasi et al., 2016; Strakowski et al., 2003; Futoma et al., 2020;
Beam et al., 2020; Szegedy et al., 2014).

1. The code is publicly available at https://github.com/dtak/optimal-summaries-public
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In particular, interpretable models (those which can be inspected by a human) enable
not only statistical validation, but also provide an extra layer of human-based validation
that can be helpful in high-stake settings such as healthcare. Yet, making interpretable
predictions from clinical timeseries, especially those that have moderate dimensionality
and missingness, remains an open challenge (Tomašev et al., 2019; Rajkomar et al., 2018).
Johnson et al. (2021) tackle this problem by first converting a timeseries into a set of
aggregate features akin to the kind of features that clinicians typically use, and use these to
make predictions. For example, a patient’s ICU timeseries could be turned into summary
features per predictor, such as the mean across the entire LOS and the proportion of time
spent above threshold. However, while each of these features is interpretable, the number
of features required to make an accurate prediction can be quite large. As a result, the
reason behind the model’s prediction may still be difficult for experts to understand.

In our work, we improve the interpretability (while maintaining the prediction quality)
of clinical timeseries prediction models by introducing one more stage into the prediction
pipeline: the human-interpretable timeseries features are now grouped into concepts that
allow for organized inspection of the model and can correspond to semantically meaningful
clinical ideas. In doing so, our approach facilitates meaningful human-inspection by learning
feature groupings which aren’t too dense (too many correlated features are hard to interpret)
or too sparse (the features themselves then become the concept). Examples of these high-
level concepts may include illness severity or respiratory function, which could be used to
explain a model in a decomposable, concise manner. Moreover, we introduce a new method
for optimizing such concept-based models that selects only the most predictive features to
add to each concept, thereby enabling simultaneously sparse and accurate interpretations
of the downstream prediction task.

On a task of predicting vasopressor onset in the ICU (based on MIMIC-III database (John-
son et al. (2016))), we demonstrate that our algorithm achieves state-of-the-art predictive
performance while presenting interpretable and concise feature groupings for inspection.
When examined by an expert intensivist, we show that our concepts allow for identification
of high-level clinical concepts that made sense for the prediction. Even for concepts that
don’t possess medical meaning at face-value, the concept framework provides a better eval-
uation than would have otherwise been possible. Thus, our method enables users such as
clinical experts to better inspect model predictions and validate its reasoning, addressing
important desiderata such as safety and fairness of ML models in high-risk clinical settings.

Generalizable Insights about Machine Learning in the Context of Healthcare

While our core application in this paper is predicting vasopressor onset, the architecture and
optimization algorithm will be valuable in other clinical applications that involve making
predictions from timeseries data. Specifically:

1. Model: We introduce a bottleneck architecture which automatically learns high-level
concepts, or clinically-intuitive groups of features, as explanations for the model’s pre-
diction. In doing so, we allow for sufficiently expressive representations that organize
the data as clinicians might.
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2. Optimization: The above model does not optimize well with standard gradient de-
scent; however, we present a simple, easy-to-implement optimization procedure that
robustly identifies these solutions. This allows us to not only optimize the model once,
but to get a collection of possible prediction models for further exploration. This is
important in health domains because models cannot be expected to know what is
causal.

3. Demonstration: We show that this architecture and optimization method combination
produces a generalizable framework for clinicians to more easily inspect and intervene
on machine learning predictions in high-stakes scenarios while maintaining predictive
accuracy.

The combination of our architecture and optimization innovations let us take one step closer
to working with clinical experts to build models we can trust.

2. Related Work

2.1. Timeseries Summaries

A common method to improve the interpretability and predictive performance of ML models
on clinical timeseries data is to learn representative, understandable statistical summaries
as the models input (Johnson et al. (2021); Guo et al. (2020); Awad et al. (2017); Haru-
tyunyan et al. (2019)). These summary statistics provide an efficient, easy-to-calculate
representation of physiological time series, some examples of which include mean, mini-
mum, maximum, first time measured, and proportion of time spent above threshold (see
Table 1). The identification of important summary features or combinations of summaries
subsequently can provide interpretable explanations of the prediction. On various clini-
cal risk stratification tasks, the summary statistics were found to outperform traditional
scoring systems and achieve similar performance to baseline deep learning models: Awad
et al. (2017) uses the timeseries summaries as features for various data mining models (e.g.
Random Forest, Decision Trees, Naive Bayes) and Harutyunyan et al. (2019) and Johnson
et al. (2021) use them as features for a logistic regression model.

However, using summary statistics themselves as explanations poses various challenges.
First, numerous features are needed for the prediction task, as summary statistics must be
calculated for each feature, which significantly decreases a clinician’s ability to understand
the explanation of the prediction. Next, some summary statistics lack semantic meaning
and therefore decrease the model’s interpretability, in particular measures of dispersion and
distribution tendency such as skewness and kurtosis. This work is the first to propose
a method to improve sparsity, semantic meaning, and therefore interpretability, through
concepts learned by concept bottleneck models.

2.2. Concept Bottleneck Models

While most deep learning models are considered “black-box” models because they go
from raw input to final prediction, concept bottleneck models learn intermediate human-
understandable representations of the raw input, i.e. concepts, and then use them to make
predictions (Koh et al. (2020)). This architecture has been gaining interest in the deep
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learning community because of its competitive predictive performance and interpretability
advantages. In particular, concept bottleneck models have become very useful in clinical
prediction tasks, which tend to be high-risk and therefore require any ML-based models to
be both accurate and interpretable (Clough et al. (2019); De Fauw et al. (2018)).

However, one major drawback of concept bottleneck models is that they require a set of
pre-defined concepts and concept labels for each data point during training time. There
is no guarantee that raw inputs will naturally align with human concepts, and human
judgement may lead to concepts that are poor representatives of the original data (Chen
et al. (2020)). In addition, the process of labelling concepts for thousands of data points
requires extensive labor from an expert on the prediction domain, which is infeasible in
many contexts (De Fauw et al. (2018)). Our work avoids these challenges by simultaneously
learning meaningful concepts while training for the downstream prediction task.

2.3. Interpretability

Recently, interpretability has arisen as necessary desiderata of an applicable machine learn-
ing model. In many high-stakes scenarios, it is not sufficient for a machine learning model
to simply be accurate at prediction, but it must also be easily understood by the deployer.

Specific to clinical data, one main approach towards bridging the gap between clinician ex-
pertise and black-box predictions is to develop simple, clear, interpretable machine learning
models that achieve similar accuracy as complex black-box models. For example, attention
mechanism models use attention scores to quantify importance of features towards the fi-
nal prediction, thereby providing an explanation in the form of important predictors (Sha
and Wang (2017); Choi et al. (2016)). However, attention scores have been proven to be
misleading, as they are frequently uncorrelated with gradient-based measures of feature im-
portance, and there can exist very different attention configurations that nonetheless yield
similar predictions (Serrano and Smith (2019); Jain and Wallace (2019)). Sparse logistic
regression similarly regularizes feature weights to identify the most important features used
during prediction (Poursabzi-Sangdeh et al. (2021)). However, multi-collinearity amongst
predictors is a frequent phenomenon in clinical timeseries data, which causes unstable esti-
mates of feature weights and thereby renders them to be unreliable as feature importance
measures. Our work proposes a greedy optimization method which directly selects im-
portant features to the prediction, thereby avoiding misleading information from attention
mechanisms and feature coefficients.

Another family of interpretable models is rule-based models, such as decision sets (Lakkaraju
et al. (2016); Lage et al. (2019)) and rule lists (Ustun and Rudin (2015); Letham et al.
(2015)), which identify sets of rules based on specific feature values to describe the rela-
tionships among variables and explain predictions. One limitation of this approach is that
explanations are only presented in terms of raw features, which often may not be meaning-
ful on their own. In our work, we aim to automatically learn concepts which meaningfully
group features together, thereby increasing the scope of feature space and enhancing the
ability of a clinical expert to understand the prediction.
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3. Background and Notation

Notation We consider concept bottleneck models with the following architecture: let
{X,M} be the inputs (timeseries clinical variables and measurement indicators). First,
the inputs {X,M} are turned into semantically meaningful summary statistics H, which
contains each of the summary statistics calculated for each of the clinical variables for each
patient. Examples of summary functions include the mean of the timeseries variable and
the number of hours a measurement has been above some threshold. Next, those features
H are converted into concepts C, or collections of features that may have clinical meaning
that are also useful for prediction. Finally, predictions are made from the concepts C to
the outcome Y .

Interpretable Timeseries Summaries In this work, we build on the prior work of
Johnson et al. (2021), which used the following approach to construct the summary statistics
listed in Table 1. However, this prior work did not have a bottleneck layer to connect these
features into high-level, meaningful concepts.

The summary functions utilize a weight matrix W as a duration parameter to model how
much of each timeseries is needed to compute each of the summaries. Let Di,v represent a
duration cutoff for variable v and summary function i where only the variable’s timeseries
data that occurred within the previous Di,v hours before time of prediction is used. We
define the weight tensor as followed:

wt,i,v = σ((t− T +Di,v)/τ)

where σ(x) = 1
1+e−x and τ controls the harshness of the weight tensor through the sigmoid

function. Here we see that t > T −Di,v results in a wt,i,v value closer to 1, and t < T −Di,v

results in a wt,i,v value closer to 0, with the temperature τ controlling how far the sigmoid
function is pushed towards its edges. The vector of duration parameters D are included in
βH , the set of parameters for summary functions learned during the downstream prediction
task.

Some summary functions also utilize additional threshold parameters, which correspond to
clinically-intuitive ideas such as how long a patient’s clinical variables have exceeded above
or dropped below some critical value. Let ϕ+ and ϕ− represent the upper threshold and
lower threshold parameters respectively. These thresholds are also included in βH , the set
of parameters for summary functions learned in the downstream prediction model.

Lastly, each of the summary statistics uses measurement indicators M in order to ensure
that summaries are only computed using time steps where the variable is measured.
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Description Function

Mean of time-series (
∑T

t=1(wt,i ⊙Xt ⊙Mt))/(
∑T

t=1Mt ⊙wt,i)

Variance of time-series
(
∑T

t=1 Mt⊙wt,i)
2

(
∑T

t=1 Mt⊙wt,i)2−
∑T

t=1 Mt⊙W 2
t

⊙
∑T

t=1Mt ⊙wt,i ⊙ (Xt − X̄)2

Feature ever measured indicator σ((
∑T

t=1wt,i ⊙Mt)/(τ ⊙
∑T

t=1wt,i))

Mean of indicators (
∑T

t=1wt,i ⊙Mt)/(
∑T

t=1wt,i)

Variance of indicators (
(
∑T

t=1 wt,i)
2

(
∑T

t=1 wt,i)2−
∑T

t=1 W
2
t

)
∑T

t=1wt,i ⊙ (M t − M̄)2

# switches from missing to measured (
∑T

t=1wt,i ⊙ |Mt+1 −Mt)/(
∑T

t=1wt,i)

First time feature is measured min t s.t. Mt = 1

Last time feature is measured max t s.t. Mt = 1

Proportion of time above threshold ϕ+ (
∑T

t=1(wt,i ⊙Mt ⊙ σ(Xt−ϕ+

τ )))/(
∑T

t=1Mt ⊙wt,i)

Proportion of time below threshold ϕ− (
∑T

t=1(wt,i ⊙Mt ⊙ σ(ϕ
−−Xt

τ )))/(
∑T

t=1Mt ⊙wt,i)

Slope of a L2 line
∑T

t=1 wt,i(t−t̄w)(Xt−X̄w)∑T
t=1 wt,i(t−t̄w)2

, where t̄w =
∑

t wt,i·t∑
t wt,i

, X̄w =
∑

t wt,i·Xt∑
t wt,i

Standard error of the L2 line slope 1∑T
t=1 wt,i(t−t̄w)2

Table 1: Summary functions H. ⊙ denotes element-wise matrix multiplication and division
is performed element-wise.

4. Methods

4.1. Concept Bottleneck Model Architecture

Consider predicting target y ∈ {0, 1} from input x ∈ Rd through a vector of k concepts c
∈ Rk. We define bottleneck models of the form f(g(x)), where g : Rd → Rk maps inputs x to
concepts c and f : Rk → R maps concepts c to labels y. The term concept bottleneck model
comes from the design of the architecture such that the prediction ŷ = f(g(x)) relies on input
x solely through ĉ = g(x). We consider the task of learning concepts ĉ in an unsupervised
way, without access to prior labels. In our concept bottleneck model, we follow the same
architecture with an additional feature pre-processing step h(x), i.e. the computation of
summary statistics. Thus, our bottleneck model follows the form f(g(x, h(x)).

Figure 1 visually depicts our model’s architecture and learning process as described below.
First, we compute summary statistics H from clinical timeseries inputs {X,M}, and then
concatenate them with the original inputs to form pre-processed input Z. We then feed
Z as input to function g, which outputs concepts C. Logistic regression model f outputs
predicted probabilities ŷ = p(y = 1|C).
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Figure 1: Our Bottleneck Model Architecture. We compute summaries H from clinical
timeseries {X,M}, and then concatenate them with the original inputs to form Z. We
then feed Z as input to function g, which outputs concepts C. Lastly, logistic regression
model f uses C to output predicted probabilities for the output label y.

4.2. Objective with Interpretability Regularization

Our objective is to jointly learn the logistic regression, bottleneck layer, and summary
function parameters β = {βf ,βg,βH}. We minimize the below loss function for N patients
using K concepts:

L(β,Z,y) = − 1

N

N∑
n=1

ωn(yn · log[f(g(Zn,β))] + (1− yn)log[1− f(g(Zn,β))])

+ λ1 ·
K∑
k=1

|βg,k|+ λ2 ·
K∑
k=1

∑
j ̸=k

∣∣∣∣ βg,j · βg,k

∥βg,j∥∥βg,k∥

∣∣∣∣ (1)

Our loss function builds off the weighted binary cross-entropy loss using predictive model g.
We address class imbalance by weighting the contribution of each training example inverse
proportionally to its class frequency, or ωn.

We then add regularizations to increase the interpretability of learned concepts, enforcing
sparsity of features within each concept and distinction of features across concepts. Specif-
ically, we include an L1 regularization penalty on βg and a cosine similarity regularization
penalty across all combinations of {βg,k,βg,j ̸=k}.

In particular, we provide a method to fairly ensure sparsity across models with different
numbers of concepts, as the strength of L1 regularization is inherently positively correlated
with the number of concepts since it is the cumulative sum of coefficient magnitudes. Instead
of comparing k−concept models with the same λ1 value, we perform a hyperparameter
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search for λ1 such that the sum of the magnitude of the feature weights within each concept
are below a certain threshold γ, or

∑
i |βg,k,i| < γ ∀k.

4.3. Greedy optimization method

Given a trained concept bottleneck model according to the objective in Equation 1, we define
a procedure for selecting the most interpretable and predictive concept definitions. We aim
to build compact groups of features to serve as concepts, ones that can achieve comparable
predictive performance to a full model, but without hundreds of low-weight, unpredictive
features. The steps of the algorithm are described below, and the full algorithm is described
in Algorithm 1.

Initialization We first select a subset of features Ak for each concept ck as input for the
optimization method. We select the 90th percentile of features by weight:∑

i

|βg,k,Ai,k
| ≥ 0.9

∑
i

βg,k,i ∀k

Using this selection process, we choose a small enough subset of important features such
that speed during runtime is optimized, yet a large enough subset such that a holistic group
of features is considered for the concept definition. This initialization also allows for subsets
of input features to be different lengths across various concepts, enabling flexibility amongst
concepts sizes.

Feature Budget We then define a feature budget ϕb across all concepts to ensure the
sparsity, i.e. we select ϕb features across all k concepts and use the groups of features as
concept definitions. In our case, we set:

ϕb = 10k

Note that this does not mean each concept has 10 features, rather each concept can have a
different number of features as long as the sum across all concepts is not more than ϕb. This
addresses the challenge of diverse concept definitions, where one concept may only need 2
features versus another concept which may require 10 features for complete context.

Greedy Selection The optimization then proceeds by, at each step, greedily selecting the
feature and concept tuple (z∗, ck∗) which provides the greatest increase in AUC. The method
iteratively explores all (z, ck) from the set of unselected features uk for each concept ck,
finds the (z∗, ck∗) which results in the maximum AUC, then adds z∗ to the set of selected
features for concept ck∗ : sk∗ . This selection process repeats until we reach the feature
budget, or until we have sk : Rlk ∀k such that

∑
k lk = ϕb. sk is initialized as ∅ and uk is

initialized as Ak.

Additional details After sk ∀k is determined, we fine tune f so that it is optimally
predictive given the updated concept definitions. We fix the concept definitions according
to sk in βg,k ∀k and fine-tune logistic regression parameters βf .
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Algorithm 1 Greedy Optimization Method

Require: A, s,u, ϕb, f
for i ∈ 1 : ϕb do

maxAUC = 0
z∗ = −1
for k ∈ K do

for z ∈ uk do
if AUC(f(z)) > maxAUC then

z∗ = z
ck∗ = ck

end if
end for

end for
sk∗ = sk∗ ∪ z∗

uk∗ = uk∗ \ z∗
end for
Finetune f

5. Cohort and Data Processing

5.1. Cohort Selection

We use EHR data from the MIMIC-III care database, which contains deidentified, compre-
hensive clinical data of patients admitted to the Beth Israel Deaconess Medical Center ICU
unit Johnson et al. (2016). We extract data from MIMIC-III PhysioNet version 1.4, which
contains 30,232 patients. We restrict analysis to adult patients (age greater than 18 years
old) with an ICU or overall length of stay between 6 and 600 hours. We also exclude cases
where vasopressors were administered within the first 6 hours of admission. After apply-
ing these restrictions, our final cohort contained 15,552 patients, 9.83% or 1528 of whom
required vasopressor intervention. A summary of cohort characteristics and demographics
can be found in Table 2.

Cohort Age % Female % Urgent % Emergency % SICU % TSICU % MICU

All 63.4 45.1 1.05 88.8 20.1 13.3 46.7
+ 66.5 43.6 1.24 86.4 16.2 13.2 33.6
- 63.1 45.3 1.03 89.1 20.5 13.4 48.1

Table 2: Mean Background Characteristics of Cohort

5.2. Feature Choices

Let N be the total number of patients in our cohort; we extracted both static and hourly
physiological data for each patient n of N . All variables were normalized to have zero mean
and unit variance.
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Static Data S. The static data matrix S: (N × 8) contains 8 fixed variables for each
patient n, including demographic variables (age at admission and gender), ICU service
type (medical, surgical, trauma surgical, or cardiac surgery) and admission type (urgent,
emergency, or elective).

Per-timestep Clinical Data X. The clinical variable matrix X: (N × V × T ) contains
V = 28 clinical variable measurements for each patient n at hour t for T = 6 hours of
data. The following 28 clinical variables measure vital signs and labs: dbp (diastolic blood
pressure), fio2 (fraction of inspired oxygen), GCS (Glasgow Coma Scale), hr (heartrate),
map (mean arterial pressure), sbp (systolic blood pressure), spontaneousrr (spontaneous
respiratory rate), spo2 (oxygen saturation), temp (body temperature), urine (urine out-
put), bun (blood urea nitrogen), magnesium, platelets, sodium, alt (alanine transami-
nase), hct (hematocrit), po2 (partial pressure of oxygen), ast (aspartate aminotransferase),
potassium, wbc (white blood cell count), bicarbonate, creatinine, lactate, pco2 (par-
tial pressure of carbon dioxide), glucose, inr (international normalised ratio), hgb (hema-
globin), bilirubin_total.

Per-timestep Clincal Data Indicators M . The indicator matrix M : (N × V × T )
contains indicators Mn,v,t which equals 1 if clinical variable d was measured at time t for
patient n and 0 otherwise.

Outcome labels y. The outcome label vector y of length N contains indicators yn which
equals 1 if patient n required vasopressor therapy during their stay and 0 otherwise.

6. Evaluation Approach

We compare models using our bottleneck architecture and greedy optimization to other
interpretable models and deep learning models. We show that our models achieve perfor-
mance comparable to these baseline models, while simultaneously providing interpretable
concepts that greatly enhance human-understanding of predictions.

6.1. Baseline Models

For our first baseline model, we use a Logistic Regression model on the interpretable time-
series summary statistics, as previous work document their comparable performance to
state-of-the-art deep models and their increased interpretability due to clinical sensible
summaries (Johnson et al. (2021)). We also use a LSTM model that takes as input all of
the patient timeseries as our traditional deep baseline architecture, as prior work show their
superior performance at mortality prediction from clinical timeseries data (Harutyunyan
et al. (2019)). We train all Logistic Regression models for 1,000 epochs and LSTM models
for 10,000 epochs using early stopping. All hyperparameters, including LSTM hidden state
and layer dimensions, optimizer learning rate, and regularization parameters (eg. horseshoe
shrinkage parameter), were chosen via a non-exhaustive random hyperparameter search.

6.2. Metric

Our main metric for comparing model performance is the Area Under the Receiver Oper-
ating Characteristic Curve (ROC AUC). We chose this metric due to the binary reponse
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variable of vasopressor onset, as AUC best measures how the true positive rate and false
positive rate trade off.

6.3. Optimization Details for Concept Bottleneck

We construct our concept bottleneck models by splitting the cohort of N patients into
train/test sets using an 80/20 split. All performance metrics are averaged across 6 train-
test splits. We trained our models for 1,000 epochs with the Adam optimizer at a batch size
of 256. Three hyperparameters (optimizer learning rate, weight decay, and cosine similarity
λ2), were selected via random hyperparameter search. For the L1 hyperparameter λ1, we
performed a hyperparameter search such that the sum of the magnitudes of feature weights
across all concepts were below a certain threshold γ. All temperature parameters τ were
set to 0.1.

In order to determine the optimal number of concepts, we compared k-concept models at
a given γ (holding all other hyperparameters constant) and selected the model with the
smallest number of concepts and greatest AUC improvement.

Figure 2: L1 regularization hyperparameter search to determine optimal number of con-
cepts. This plot shows that a 4-concept bottleneck model is the smallest model that provides
a high AUC.

From Figure 2, we see that the optimal number of concepts at γ = is 4 concepts, as it the
smallest k to achieve similar performance to k > 4 concept models.

7. Results

Our optimization method provides a superior method of selecting important
features for predictive accuracy compared to traditional feature selection meth-
ods based on coefficients. We applied our optimization strategy of greedily selecting
the feature and concept tuples in our concept bottleneck model (shown in red in 5a), which
demonstrates better performance than the baseline strategy (where features are selected
based on their weights) on the Johnson et al. (2021) model (shown in green in 5a). Next,
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in order to separate the effect of our newly introduced optimization from our newly in-
troduced hierarchical bottleneck model, we include an additional baseline where we apply
our optimization to the model in Johnson et al. (2021). These results are shown in blue.
Our greedy optimization strategy results in significantly higher AUCs for both CBMs and
Johnson et al. (2021)’s model.

In particular, the improvement in AUC increases as the sparsity of features increases, which
implies that our greedy optimization process is able to better identify the set of important
features which achieve high predictive performance. Thus, our optimization method over-
comes the challenge of misleading regression coefficients and identifies the predictive value
in explicitly and greedily selecting features based on AUC.

We verify these results by showing the concise concept definitions learned by our bottle-
neck models and optimization method. Figure 3 shows the magnitude of top 100 feature
weights for the Johnson et al. baseline model (Johnson et al. (2021)) and Figure 4 shows
that of a 4-concept bottleneck model, where the blue represents pre-optimization method
and red represents the features selected post-optimization method. First, we see that for
most concepts, the magnitude of the weights of the top 100 features quickly converges to
0, whereas for the baseline logistic regression model, all top 100 features have non-zero
coefficients, and there is no clear indication of which features are the most important to
the prediction. Next, we observe that the selected important features by the optimization
method are sparse, thus allowing for more concise and interpretable explanations.

Figure 3: Weights of Top 100 Fea-
tures for Johnson et al. model

(a) Concept 1 (b) Concept 2

(c) Concept 3 (d) Concept 4

Figure 4: Weights of top 100 features
for 4-concept bottleneck model
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Our interpretable bottleneck model achieves performance comparable to (less
interpretable) state-of-the-art baselines. Figure 5a shows the comparable performance
of our bottleneck model architecture (in red) vs. a baseline Logistic Regression model
(in blue), both using the greedy optimization method. Notably, our bottleneck model
demonstrates equivalent performance with the baseline Logistic Regression model with a
sparse feature set, demonstrating the bottleneck model’s strong predictive ability under
feature constraints.

When regularizations were not added to our objective, we found that our bottleneck mod-
els achieved higher accuracy than the baseline Johnson et al. (2021) Logistic Regression
model and significantly outperformed the baseline LSTM model, as shown in Figure 5b. As
expected, we observe that inserting an intermediate bottleneck layer to a baseline logistic
regression model adds increasing complexity in the model architecture, thereby allowing the
model to better learn patterns in elaborate clinical timeseries data. Surprisingly, we also see
that this neural network architecture achieves significantly better performance the state-of-
the-art LSTM model, which may speak to the utility of our timeseries summary functions or
may be attributed to the difficult training process for LSTMs (they are extremely prone to
random initializations and overfitting). However, it is also important to note that without
any regularizations on our bottleneck models, the concept definitions learned during the
prediction process may not necessarily be meaningful/interpretable, so we do not employ
these non-regularized models in our concept analysis.

(a) Greedy vs. Weights Feature Selection
Approach

(b) Bottleneck Model vs. Johnson et al. Model
vs. LSTM Model AUC

Figure 5: AUC plots comparing our bottleneck model, Johnson et al. model, and LSTM
model. The first plot shows the superior selection of predictive features of our greedy
optimization method and the second plot demonstrates the greater predictive accuracy of
our bottleneck model (without regularizations) compared to Johnson et al. and LSTM
baseline models.
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Our approach allows for a more meaningful and clinically-sensible inspection of
features.

Rather than outputting a raw list of important features and their coefficients (Figure 6
shows a truncated version), our bottleneck architecture learns distinct concepts, i.e. groups
of features which lend themselves to high-level clinical conditions that help interpret the
prediction (Figure 7). In order to interpret the clinical meaning of our concept definitions,
we had a discussion with an intensivist who is an expert on the MIMIC database and the
critical care field. We found that models of similar predictive performance learned various
concept definitions, some of which had face validity, some of which were more confusing.

Figure 7a) shows a clinically sensible list of concepts. Concept 0 (outlined in red) generally
maps to kidney function: it is widely accepted that a rapid reduction of urine output
is a early indicator of decreased kidney function, a low MAP can cause low renal blood
flow, and high levels of blood urea nitrogen (bun) are a sign that ones kidneys are unable
to remove waste products from blood (Bellomo et al. (2004); Verdecchia et al. (2001);
Seki et al. (2019)). Next, the group of features learned by concept 1 (outlined in blue)
are common indicators of sepsis. There is overwhelming medical evidence that sepsis and
septic shock are associated hyperlactatemia (high levels of lactate concentration), which is
also related to po2, a measurement of the effectiveness of the lungs in extracting oxygen
into the blood stream (Garcia-Alvarez et al. (2014)). Furthermore, concept 4 (outlined
in yellow) corresponds to a general evaluation of illness severity. Variables such as GCS,
which measures a patient’s consciousness levels, and vital signs, such as heart rate and
spontaneous respiratory rate, are common metrics tracked by clinicians that may indicate
failing health conditions. Lasty, concept 3 (outlined in green) is defined by a single feature,
pCO2, which corresponds to oxygenation of cells or respiratory condition. pCO2 typically
reflects the amount of CO2 gas dissolved in the blood and is inversely related with cardiac
output, thus decreased pCO2 levels are typically symptoms of hyperventilation or hypoxia
(Mallat et al. (2016); Bitar et al. (2020)).

Figure 7b) shows a list of concept definitions learned by another one of our models that
are less obviously sensible to a clinician. On one hand, we see that there is a significant
amount of overlap in concept definitions between the two lists, with the concepts outlined
in yellow and blue having many of the same features. This concept similarity increases our
faith in these two concept definitions, as they remain robust to different model runs. On the
other hand, the concepts outlined in red and green in Figure 7b) did not map to intuitive
clinical conditions at first glance. By way of example, our clinical expert did not find it
obvious to group inr, a variable related to blood clotting, and spontaneous respiratory rate
together in a concept. This suggests various avenues for future work, specifically exploring
the issue of nonidentifiability within our models and improving upon the robustness of
concept definitions. Interestingly, we see the utility of the concept bottleneck model in
these situations of ambiguous concepts, as the concept framework allows researchers to
easily intervene on a concept during prediction according to the clinical expert’s advice.
That is, a clinician may decide that they do not want the model to associate a particular
term associated with a particular concept when vetting the model for validity. Having the
ability for a clinical expert to understand and adjust a machine-learned model is crucial
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in high-stakes applications, and the model we introduce in our work has that essential
property. See Appendix A for a series of further experiments, such as augmenting the
bottleneck model with concepts that hold no information and changing concept definitions
before prediction, in order to sanity check the validity of the concept definitions.

Figure 6: Example explanation of prediction from Johnson et al. logistic regression model.
As shown, this long, unordered list of features is difficult to interpret/to quickly parse for
important reasons behind prediction.
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(a)

(b)

Figure 7: Example explanation of prediction from our bottleneck model. Our concept
definitions allow for easier inspection by grouping features together into higher-level clinical
conditions.
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8. Discussion

Our work offers various advantages in the domain of interpretable machine learning in
healthcare settings. Our bottleneck models demonstrate the ability to learn high-level,
semantically-meaningful concepts, providing contextualized explanations for a traditionally
black-box prediction process. Furthermore, our optimization method then identifies a com-
pact yet predictive subset of features within each concept, enhancing the interpretability
of our method compared to traditional lengthy lists of features that might not necessarily
have clinical meaning on their own. However, it also has limitations that suggest interesting
future work.

General Discussion Our work initiates interesting, open-ended discussions on the ap-
plication of concept bottleneck models in healthcare settings, and more broadly the role of
interpretable ML in any real-world setting.

First, how do we address fundamental statistical limitations of machine learning methods
in terms of robustness? In our experiments, we found that multiple models (with different
concept definitions) achieve similar levels of accuracy, which may be inevitable because
choosing the feature which produced the local maximum at every step is not guaranteed
to produce the global maximum solution. This issue of non-identifiability across similar
models could be minimized by including additional regularizations in the objective function,
exploring the sensitivity of our greedy method to the data (perhaps through controlled
perturbations to different models), or exploring non-greedy based optimizations for feature
selection. However, in scenarios where non-identifiability is unavoidable, human inspection
is needed to gain the trust of the clinician. Whether meaningful concepts explanations were
produced or not, the clinician must be able to inspect the reasoning to accurately assess
the usability of the model.

Thus, in the current scenario where statistical machine learning methods may not be robust
enough, we see that the benefit of our interpretable concept framework is that when nonsense
concepts are presented, experts can reject them or amend them. However, the best way to
solicit this feedback remains a question for further study. In our project, would it have been
most helpful for clinicians to define and label concepts in order to provide the model some
ground truth notion? Or is it more realistic for clinicians to intervene during prediction
time and modify concepts as the need arises? One direction of future work that addresses
this problem would be to conduct a user study with clinical experts to provide feedback on
the interpretability of our proposed concepts. Overall, the interaction between users and
ML models, especially in high-risk scenarios such as hopsitals, must be further explored in
order to achieve the most predictive and safe results.

Limitations First, our concept bottleneck model relies on significantly preprocessed data,
specifically the manually-defined summary statistics calculated for each timeseries variable.
We depend on knowing what might be human-interpretable base features, as we selected
functions such as mean, min, max, etc. If our bottleneck architecture and optimization
method were applied to the raw data alone (static variables, clinical timeseries variables,
and measurement indicators), it is unclear whether the interpretability of the concepts or
the accuracy of the model would be as strong as those of our current approach. Future
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work could address this by experimenting with our methods on the raw data, or using
additional non-parametric methods to identify clusters and patterns within the data to
enhance interpretability.

Furthermore, the amount of preprocessing required in our project poses a potential barrier
to the generalizability of our method. Our learned concepts may only be specific to the
cohort of patients we selected from MIMIC or to the vasopressor target we performed our
experiments on. Further experimentation on different cuts of the clinical data or different
prediction targets would better elucidate the scope of this challenge.

Conclusion In this work, we utilize a bottleneck model architecture and propose a greedy
optimization algorithm, simultaneously learning inspectable explanations and achieving
high predictive performance. Our bottleneck architecture learns concepts, or high-level
clinical conditions, which enable clinicians to better understand predictions by abstracting
away raw input data. Our optimization method then selects the most important features
within each concept, learning sparse, semantically-meaningful definitions for each concept.
We present this architecture and optimization combination as a potentially generalizable
methodology that can be applied to other clinical prediction tasks in the future, such as
predicting mortality or other interventions (e.g. ventilation). From a technical standpoint,
our algorithm enables the automatic learning of concept definitions, providing an inher-
ently interpretable framework for humans to inspect while maintaining predictive accuracy.
From a clinical standpoint, our work facilitates a realistic framework for the application of
machine learning in high-stakes scenarios such as ICU units: we enable models to learn a
set of concise, meaningful clinical explanations to transparentize its prediction process.

Acknowledgments

CW, MH, and FDV acknowledge support from NIH project R01MH123804. The au-
thors thank members of the Data to Actionable Knowledge lab for their feedback on the
manuscript.

References

Aya Awad, Mohamed Bader-El-Den, James McNicholas, and Jim Briggs. Early hospital
mortality prediction of intensive care unit patients using an ensemble learning approach.
International journal of medical informatics, 108:185–195, 2017.

Andrew L Beam, Arjun KManrai, and Marzyeh Ghassemi. Challenges to the reproducibility
of machine learning models in health care. Jama, 323(4):305–306, 2020.

Rinaldo Bellomo, Claudio Ronco, John A Kellum, Ravindra L Mehta, and Paul Palevsky.
Acute renal failure–definition, outcome measures, animal models, fluid therapy and in-
formation technology needs: the second international consensus conference of the acute
dialysis quality initiative (adqi) group. Critical care, 8(4):1–9, 2004.

Zouheir Ibrahim Bitar, Ossama Sajeh Maadarani, AlAsmar Mohammed El-Shably,
Ragab Desouky Elshabasy, and Tamer Mohamed Zaalouk. The forgotten hemodynamic
(pco2 gap) in severe sepsis. Critical care research and practice, 2020, 2020.

18



Learning Optimal Summaries

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
Advances in neural information processing systems, 29, 2016.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recog-
nition. Nature Machine Intelligence, 2(12):772–782, 2020.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and
Walter Stewart. Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism. Advances in neural information processing systems, 29, 2016.

James R Clough, Ilkay Oksuz, Esther Puyol-Antón, Bram Ruijsink, Andrew P King, and
Julia A Schnabel. Global and local interpretability for cardiac mri classification. In Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 656–664. Springer, 2019.

Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad
Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel
Visentin, et al. Clinically applicable deep learning for diagnosis and referral in retinal
disease. Nature medicine, 24(9):1342–1350, 2018.

Lucas M Fleuren, Thomas LT Klausch, Charlotte L Zwager, Linda J Schoonmade, Tingjie
Guo, Luca F Roggeveen, Eleonora L Swart, Armand RJ Girbes, Patrick Thoral, Ari
Ercole, et al. Machine learning for the prediction of sepsis: a systematic review and
meta-analysis of diagnostic test accuracy. Intensive care medicine, 46(3):383–400, 2020.

Joseph Futoma, Sanjay Hariharan, and Katherine Heller. Learning to detect sepsis with
a multitask gaussian process rnn classifier. In International Conference on Machine
Learning, pages 1174–1182. PMLR, 2017.

Joseph Futoma, Morgan Simons, Trishan Panch, Finale Doshi-Velez, and Leo Anthony Celi.
The myth of generalisability in clinical research and machine learning in health care. The
Lancet Digital Health, 2(9):e489–e492, 2020.

Mercedes Garcia-Alvarez, Paul Marik, and Rinaldo Bellomo. Sepsis-associated hyperlac-
tatemia. Critical care, 18(5):1–11, 2014.

Marzyeh Ghassemi, Marco Pimentel, Tristan Naumann, Thomas Brennan, David Clifton,
Peter Szolovits, and Mengling Feng. A multivariate timeseries modeling approach to
severity of illness assessment and forecasting in icu with sparse, heterogeneous clinical
data. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

Chonghui Guo, Menglin Lu, and Jingfeng Chen. An evaluation of time series summary
statistics as features for clinical prediction tasks. BMC medical informatics and decision
making, 20(1):1–20, 2020.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram Gal-
styan. Multitask learning and benchmarking with clinical time series data. Scientific
data, 6(1):1–18, 2019.

19



Learning Optimal Summaries

Kelly M Hoffman, Sophie Trawalter, Jordan R Axt, and M Norman Oliver. Racial bias
in pain assessment and treatment recommendations, and false beliefs about biological
differences between blacks and whites. Proceedings of the National Academy of Sciences,
113(16):4296–4301, 2016.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint
arXiv:1902.10186, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark.
Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Nari Johnson, Sonali Parbhoo, Andrew Slavin Ross, and Finale Doshi-Velez. Learning
predictive and interpretable timeseries summaries from icu data, 2021.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In International Conference on
Machine Learning, pages 5338–5348. PMLR, 2020.

Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and
Finale Doshi-Velez. An evaluation of the human-interpretability of explanation, 2019.

Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable decision sets: A
joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1675–1684, 2016.

Sidney Le, Emily Pellegrini, Abigail Green-Saxena, Charlotte Summers, Jana Hoffman,
Jacob Calvert, and Ritankar Das. Supervised machine learning for the early prediction
of acute respiratory distress syndrome (ards). Journal of Critical Care, 60:96–102, 2020.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan. Inter-
pretable classifiers using rules and bayesian analysis: Building a better stroke predic-
tion model. The Annals of Applied Statistics, 9(3), Sep 2015. ISSN 1932-6157. doi:
10.1214/15-aoas848. URL http://dx.doi.org/10.1214/15-AOAS848.

Jihad Mallat, Malcolm Lemyze, Laurent Tronchon, Benôıt Vallet, and Didier Thevenin.
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Appendix A. Appendix A.

A.1. Zero Weight Concept Experiment

Intuitively, adding an extra concept with no information (which we call a 0-weight concept)
should have no bearing on the predictive performance of the model. We compare the AUCs
of normal bottleneck models with a 0-weight concept augmented model in order to sanity
check our concept framework (shown in Figure 8) during our L1 hyperparameter λ1 search.
We see that for small regularization strengths, the two models perform very similarly and
achieve high predictive accuracy. As the regularization strength increases, we observe that
the performance of both models decreases as expected, and that the AUCs diverge slightly
at some points. We attribute this to the fact that when the regularization strength is too
high, the models are unable to learn meaningful patterns and effectively begin to randomly
guess predictions. In our analysis, we consider λ1 = 0.001, which demonstrates the expected
behavior.

(a) 4 Concepts (b) 5 Concepts

(c) 6 Concepts (d) 7 Concepts

Figure 8: 0 weight concept AUC

A.2. Changing Concept Definitions Experiment

Intuitively, if our bottleneck models learn concept definitions that are meaningful and pre-
dictive, changing features across concepts, thereby changing concept definitions, before pre-
diction should cause a drop in predictive accuracy. Shown in Figure 9, we consider a simple
4-concept bottleneck model, trained and optimized using our algorithm, that contains 1-2
features per concept for this experiment. Table 3 shows the significant decrease in AUC
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that results from swapping various features across different concepts. This is the expected
result, verifying that our models are indeed learning concept definitions that are faithful to
the downstream prediction.

Figure 9: Simple Concept Definitions for Swapping Concept Experiment

Feature Change AUC before % AUC after

spontaneuousrr to concept 0 0.721 0.585
map to concept 0 0.721 0.608
pco2 to concept 3 0.721 0.635
inr to concept 3 0.721 0.634

Table 3: Changing Concept Definition AUCs

A.3. 8 Concept Experiment

We conducted an experiment to examine our greedy optimization method when run on a
model with a larger number of concepts. Would all the concepts be necessary to achieve
similar performance as our baseline 4-concept model? Would the selected features within
each concept be similar? Figure 10 shows the concept definitions learned by our optimization
method on pre-trained 8-concept models. Interestingly, we found that our initial conclusion
of only using 4 concepts was verified, as the optimization method ultimately only chose
features from 4 concepts for the top 15 features. The concept definitions themselves are
slightly different compared to those from our original 4-concept model experiments, but
this is expected because the most important/predictive features from our original 4-concept
model are now spread across 8 concepts, and each of the 8 concepts may learn other auxiliary
features.
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(a)

(b)

Figure 10: Concept definitions from our bottleneck models
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A.4. Completeness Scores

Recently, Yeh et al. (2020) introduced the notion of completeness, which quantifies the suf-
ficiency of a particular set of concepts in explaining a model’s prediction behavior. This
metric can be applied to a set of concept vectors that lie in a subspace of some intermediate
DNN activations. Below is the formal definition introduced by Yeh et al.:

Given a prediction model f(x) = h(ϕ(x)), where ϕ(·) represents the intermediate con-
cept layer and h(·) maps the intermediate layer to the output, a set of concept vectors
c1, ..., cm, we define the completeness score ηf (c1, ..., cm) as:

ηf (c1, ..., cm) =
supg Px,y∼V [y = argmaxy′ hy′(g(vc(x)))]− ar

Px,y∼V [y = argmaxy′ fy′(x)]− ar

where V is the set of validation data, supg Px,y∼V [y = argmaxy′ hy′(g(vc(x)))] is the best
accuracy by predicting the label just given to the concept scores vc(x), and ar is the accuracy
of random prediction to equate the lower bound of completeness score to 0.

We conducted an additional experiment to compare the completeness scores of CBMs with
different numbers of concepts to verify that our selection of a 4-concept model best balanced
the trade-off between sparsity and completeness.

Num of Concepts Completeness Score

2 0.4637
3 0.6687
4 0.9445
5 0.9462
6 0.9441
7 0.9551
8 0.9526

Table 4: Completeness Scores for CBMs with 2-8 concepts

Based on the completeness scores above in Table 4, we see that our model choice of using 4
concepts is validated, as 4 concepts provides high completeness as a sufficient statistics for
model prediction while best maintaining sparseness.
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