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Abstract

People often interpret clinical prediction models to detect ‘risk factors’, i.e. to identify
variables associated to the outcome. We shed light on the stability of prediction models by
performing a large-scale experiment developing over 450 prediction models using LASSO
logistic regression and investigating model changes across databases (care settings) and
phenotype definitions. Our results show that model stability, as measured by the similarity
of selected variables, is poor across the prediction tasks but slightly better for the top (i.e.
most important) variables. Differences in the top variables are mostly due to database
choice and not due to using different target population and/or outcome phenotype defini-
tions. However, this means using a different database might lead to finding different ‘risk
factors’. Furthermore, we found the effect (i.e. sign) of variables is not always the same
across models, which makes clinical interpretation of potential ‘risk factors’ difficult. This
study shows it is important to be careful when using LASSO regression to identify ‘risk fac-
tors’ and not to over-interpret the developed models in general. For ‘risk factor’ detection,
we recommend investigating model robustness across settings or using alternative methods
(e.g. univariate analysis).

1. Introduction

The implementation of supervised learning methods (e.g., logistic regression, gradient boost-
ing machines, deep learning) on large observational healthcare data has lead to the develop-
ment of prediction models that can calculate a patient’s probability of experiencing future
healthcare outcomes (see Yang et al. (2022) for a review of clinical prediction models). These
prediction models have huge potential to improve clinical decision-making. There has also
been interest in interpreting these prediction models to identify variables associated to the
outcome, commonly referred to as ‘risk factors’. Some researchers incorrectly interpret ‘risk
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factors’ as variables that cause the outcome, but it is a known misunderstanding that pre-
diction models do not generally assess causality (Pearl, 2009; Schooling and Jones, 2018).
However, even with a correct interpretation, the issue with using prediction models for ‘risk
factor’ discovery is that prediction models are often developed using classification methods
that optimize some objective function that measures similarity between the predictions and
the ground truths. In other words, prediction models are developed with the aim to obtain
the highest predictive performance rather than to identify a complete and consistent set of
‘risk factors’.

Prediction models can leverage information available in routine-collected health care
data, such as electronic health records or insurance claims. This data includes patient de-
mographics and – depending on the database – the occurrence of medical conditions, drug
prescriptions/dispensing, measurements, or procedures. As the data is typically sparse (bi-
nary variables indicate the presence of records in the medical file) and very high-dimensional
(>> 30,000 candidate variables), regularization is necessary to stop the model from over-
fitting by adding a cost to model complexity. One way of doing this is by selecting a subset
of variables for the final prediction model. This is commonly done using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression, which reduces the size of the model
by penalizing the sum of absolute coefficients.

LASSO regression can be thought of as performing variable selection during model
fitting. Various forms of variable selection or regularization are commonly applied when
researchers develop clinical prediction models using observational data. People often inter-
pret the final model or set of variables selected into the model to identify an outcome’s ‘risk
factors’ (e.g. Nusinovici et al. (2022), see Section 2 for more examples). However, little is
known about the stability of prediction models in practice (e.g., for LASSO logistic regres-
sion the final set of variables included in the model may differ based on subjective study
design choices). If a model is unstable, using it for ‘risk factor’ detection is questionable. It
is even more problematic if an unstable prediction model is interpreted to assess the effect
of ‘risk factors’.

Traditionally, stability in machine learning (ML) is defined as the robustness of the
chosen variable set to differences in training data when drawn from the same generating
distribution or population (Kalousis et al., 2005). Although relevant for the medical domain,
we recognize differences in data might not only arise because of sources of instability such
as noise, data dimensionality/sample size, imbalance of data, and variable redundancy
(Nogueira et al., 2018). Study design choices such as the selected target population and
outcome might be even more influential. A prediction model can be defined by specifying
three components: 1) the target population (the patients you want to predict risk for at
which point in time), 2) the outcome (what you are trying to predict), and 3) the time-
at-risk (the time horizon within which the outcome should occur) (Reps et al., 2018). The
first two components require phenotype definitions in observational data. There are often
multiple ways to identify the target population/outcome and different researchers often use
different phenotypes (e.g. Mentz et al. (2016)). In general, there is a trade-off between
labelling patients with a condition correctly (positive predictive value) and detecting all
patients with a condition (sensitivity). Phenotypes form the basis for any prediction model,
however, the impact of differences in definitions on the resulting models is not well-studied.
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We aim to perform a large-scale experiment developing over 450 prediction models using
LASSO logistic regression to empirically evaluate the stability of prediction models trained
using observational data. This will provide insight into the potential issues with interpret-
ing prediction models for ‘risk factor’ discovery. We will develop prediction models using
the Observational Health Data Sciences and Informatics (OHDSI) Patient-Level Prediction
framework (Reps et al., 2018). The international research collaboration known as OHDSI
has developed open-source data standards and tools that allow prediction models to be de-
veloped and externally validated rapidly, at a large scale, following accepted best practices
(Khalid et al., 2021).

Generalizable Insights about Machine Learning in the Context of Healthcare

• It is known some algorithms are not stable, but there is very little attention to the
impact of this ‘problem’ on developed clinical prediction models: “Is the variation in
selected variables large or reasonably small? Is there a relation between the prediction
task and resulting model instability? Would different ‘risk factors’ be identified?”

• In the current work, we shed light on the stability of prediction models in a clinically
meaningful way by investigating the changes across databases (care settings) and
phenotype definitions. We propose three intuitive steps to assess the stability of
prediction models that are linear in the variables.

• We empirically show that a higher number of outcome cases leads to more variables
being selected using LASSO logistic regression, but more stability in the variables (i.e.
less different variables selected). The stability of the developed models is poor overall,
but slightly better for the top (i.e. most important) variables. The database choice
is important for the selected top variables; different databases lead to different ‘risk
factors’. Finally, interpreting the effect of ‘risk factors’ is problematic as the sign can
differ across models.

• Researchers should be careful not to over-interpret prediction models as the identified
‘risk factors’ appear to depend on the study design choices. Therefore, we recommend
investigating model robustness across settings or using other techniques for ‘risk factor’
detection (e.g. univariate analysis).

2. Related Work

Identifying Risk Factors
When researchers are interested in risk factors, they are generally interested in finding
variables that are associated to the outcome. We define a ‘risk factor’ as a variable that
is associated with the outcome. Historically, prediction models were developed by experts
handpicking a small number (5-10) of variables, removing correlated variables, and then
fitting a model. These models would then be interpreted to determine the ‘risk factors’
and their effects. Recently, an increase in the availability of large observational healthcare
data has resulted in more advanced, data-driven, machine learning approaches to prediction
model development. These models, developed with hundreds or thousands of variables, are
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often also being interpreted for ‘risk factor’ discovery. However, these methods generally
do not account for correlations between variables, which makes interpretation problematic.

In healthcare data, we expect correlation between variables as procedures are often used
to diagnose medical conditions, and being diagnosed with a medical condition often leads
to a drug being prescribed. This means sets of procedures, medical conditions, and drugs
are commonly observed together. If a data-driven approach to develop prediction models
is applied, this correlation is likely to impact the observed effect of a variable.

Prediction models generally find variables that are associated with the outcome, how-
ever, the set of variables identified as predictive by a prediction model may only be a subset
of the complete set of ‘risk factors’. For example, LASSO regression often ignores vari-
ables that are weakly associated with the outcome. In addition, if two variables are highly
correlated, LASSO regression is likely to ignore one of them or the correlation may cause
interpretation issues with the coefficients. If a LASSO regression is interpreted to identify
‘risk factors’, then many real ‘risk factors’ may go undetected. An additional concern is
that if models are unstable, then the set of identified ‘risk factors’ may vary based on how
the model was developed, which is problematic, as you ideally want a consistent set of ‘risk
factors’. Even more problematic is interpreting the coefficients of a LASSO regression model
(or variable importance of a ML model), as correlations between variables can cause these
models be unstable. This makes it possible to find both positive and negative associations
between a variable and an outcome, from which wrong conclusions may be drawn.

Despite these concerns, prediction models developed by algorithms such as LASSO re-
gression or another form of regularized regression are commonly being interpreted for ‘risk
factor’ discovery. For example, to identify ‘risk factors’ associated with (nine) mayor eye
diseases (Nusinovici et al., 2022), COVID-19 mortality (Zhang et al., 2021), suicide at-
tempts (Garćıa de la Garza et al., 2021), (self-reported) breast cancer (McEligot et al.,
2020), change in postoperative pain outcomes (Parthipan et al., 2019), and inflammation
in Crohn’s disease patients (Reddy et al., 2019). Earlier stability analysis in the context of
healthcare has investigated model stability and how to develop (more) stable models given
a set of data (Gopakumar, 2017), in this work we investigate the stability when the data
might change as a result of study design choices.

Stability Algorithms
It is known some algorithms that reduce the size of the model, such as LASSO regression,
are not consistent variable selectors and adjustments might be needed (Leng et al., 2006).
Different adjustments have been proposed in the ML literature such as choosing the tuning
parameter differently (Meinshausen and Bühlmann, 2004), stability selection (Meinshausen
and Bühlmann, 2010), or random lasso (Wang et al., 2011). Nevertheless, ordinary LASSO
regression is commonly used (without adjustments) to develop prediction models for the
medical domain (Christodoulou et al., 2019).

Measuring Stability
Stability of variable selection methods can be assessed by generating slightly different
datasets (e.g. by taking bootstrap samples, noise injection, or random subsampling), then
applying the variable selection method of interest and then measuring the variability in the
selected variable set. For a review of measures to quantify stability we refer to Nogueira
et al. (2018). Existing methods can be grouped in similarity-based versus frequency-based
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measures. Similarity-based measures define stability as the average pairwise similarity be-
tween all possible pairs of variable sets. These measures depend on the choice of similarity
definition, e.g. the Hamming distance (Dunne et al., 2002), the Jaccard index (Kalousis
et al., 2005), or the POG index (Shi et al., 2006). Frequency-based measures are (a function
of) the observed frequencies of selection of each variable (or variable set). Some examples in-
clude Davis’ Measure (Davis et al., 2006), Krizek’s measure (Kř́ıžek et al., 2007), and Goh’s
measure (Goh and Wong, 2016). Based on their literature review, Nogueira et al. (2018)
propose the ‘stability estimator’ as a novel (and preferred) measure to quantify stability.

3. Methods

3.1. Datasets

We used seven large observational healthcare databases in this study. All datasets used in
this paper were mapped into a data structure known as the Observational Medical Outcomes
Partnership Common Data Model (OMOP-CDM) (Overhage et al., 2012). The OMOP-
CDM was developed to standardise local data in a consistent structure and vocabulary,
which allows us to perform observational research at scale by utilising existing tools and
sharing analysis code across sites. Database details are available in Table 1 and a list of
descriptions in Appendix A. All databases obtained institutional review board approval
when necessary.

3.2. Specification of Prediction Tasks

Following the proposed prediction framework by Reps et al. (2018), we defined a prediction
question as: “Among a target population, which patients will develop an outcome during a
time-at-risk period relative to index?”. In this study we focused on developing models for
nine different prediction tasks (corresponding to nine outcomes).

Target population
The target population of interest is the general population, we investigated the choice of
three phenotype definitions:

T1. Patients with a healthcare visit during 2017 (index is a random visit in 2017)

T2. Patients with a influenza vaccination during 2017 (index is the date of the influenza
vaccination in 2017)

T3. Patients observed in the database during 2017 (index is the 1st of January 2017)

Outcomes
The nine outcomes of interest are: acute myocardial infarction, anaphylaxis, appendicitis,
disseminated intravascular coagulation, encephalomyelitis, Guillain-Barré syndrome, hem-
orrhagic stroke, non-hemorrhagic stroke, and pulmonary embolism. These outcomes were
chosen as they were listed as COVID-19 vaccine outcomes of interest by the U.S. Food and
Drug Administration (2021). For each outcome we used 3 or 4 different phenotype defini-
tions (see Appendix B): a broad definition (including a wide range of diagnosis codes), a
narrow definition (including a smaller set of diagnosis codes selected by the U.S. Food and
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Table 1: List of databases included in study (ordered by database population size).

Database name Acronym Country Data type Population size Age range

IBM MarketScan®
Commercial Claims
and Encounters
Database

CCAE USA Claims 157M 0-65

Optum® De-
identified Electronic
Health Record
Dataset

Optum EHR USA EHR 101M All

Optum® De-
Identified Clinfor-
matics® Data Mart

Optum DoD USA Claims 91M All

IBM MarketScan®
Multi-State Medi-
caid Database

MDCD USA Claims 33M All

IQVIA Disease Ana-
lyzer Germany

IQVIA Germany Germany Claims 31M All

Japan Medical Data
Center

JMDC Japan Claims 13M All

IBM MarketScan®
Medicare Supple-
mental Database

MDCR USA Claims 10M Mostly 65+

Drug Administration), a narrow definition limiting outcomes to during inpatient and/or
emergency department visits.

Time-at-risk
The time-at-risk period is one year for all prediction tasks as we were interested to inves-
tigate if we could predict outcomes associated with vaccines. We predicted the first time
occurrence of the nine outcomes from 1 day until 365 days after the specified index date.

We chose to investigate multiple target population/outcome phenotype definitions across
databases to see what impact, if any, these choices make on model stability, specifically the
different model variables for the same prediction task. We selected these prediction tasks
related to COVID-19 vaccination as models to predict negative outcomes were needed for
the general population (as the vaccination was first recommended for all adults and later
also for children), at a time when there were many unknowns and a lack of standards. This
means the choice of target population and outcome definitions is less clear. Hence, this
resembles a real-world setting where there was likely to be subjectivity in the study design
choices when developing models.
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3.3. Data Extraction

We created a labelled data set for each combination of database d, target population t, and
outcome o:

• Databases d ∈ D where D = {CCAE, Optum EHR, Optum DoD, MDCD, IQVIA
Germany, JMDC, MDCR}.

• Target population t ∈ {T1, T2, T3}, where T = {General population} with 3 different
phenotype definitions.

• Outcome o ∈ O where O = {Acute myocardial infarction, Anaphylaxis, Appendicitis,
Disseminated intravascular coagulation, Encephalomyelitis, Guillain-Barré syndrome,
Hemorrhagic stroke, Non-hemorrhagic stroke, Pulmonary embolism}. Each outcome
o has 3 or 4 (po) different phenotype definitions {o1, .. , opo}.

Within each database d, we extracted a sample for each target population definition
{T1, T2, T3}. For each cohort, the following inclusion criteria were applied:

- Patients must be observed in the database >=365 days prior to index date

The index dates were a random visit during 2017 (T1), the date of the influenza vaccination
in 2017 (T2), and 1st of January 2017 (T3). As the cohorts were large we took a random 2
million patient sample for each database if the cohort was larger than 2 million.

For each target population cohort sample t in database d, we then extracted the following
candidate variables:

• Age at index date in 5-year buckets (0-4, 5-9, 10-14, etc.)

• Sex

• One-shot encoding for any medical condition recorded in the 365 days up to 1 day
prior to index date

• One-shot encoding for any drug recorded in the 365 days up to 1 day prior to index
date

This resulted in a K-dimensional vector of candidate variables xdt
i for patient i in database

d and target population cohort sample t. Age and gender are required by the OMOP-CDM
and were never missing. For conditions and drugs, no record was interpreted as patient
does not have the condition or receive the drug (thus effectively imputed as zero). We used
one-year covariate lookback as the choice of covariate lookback has been shown to have little
impact on performance (Hardin and Reps, 2021) and using one-year covariate lookback has
the advantage that variables are available for all patients.

For each outcome definition op we then extracted the outcome label for each patient in
each database/target population by determining whether they had the outcome recorded
during the time-at-risk (1 day after index until 365 days after index). If they did, they were

assigned a label of 1 (y
dtop
i = 1, indicating they had the outcome op during the time-at-risk)

and if they did not, they were assigned a label of 0 (y
dtop
i = 0).

This resulted in 588 (7 database, 3 target populations, and 28 outcome definitions)
labelled data sets, where the data for database d, target population t and outcome definition

op is Ddtop = {(xdt
i , y

dtop
i )}Ni=1.
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3.4. Model Development

For each labelled data set Ddtop per target population and outcome definition in each
database, a random sample containing 75% of patients (‘training set) was used for devel-
opment and the remaining 25% of patients (‘test set) was used for (internal) validation.
Within each training set, we used 3-fold cross validation to pick the optimal regularization
hyperparameter for LASSO logistic regression (Suchard et al., 2013). The hyperparame-
ter selection optimised a ranking measure known as the area under the receiver operator
curve (AUC). We then obtained the final prediction model by training the LASSO logistic
regression with the optimal hyperparameter on the complete training set.

For each of the nine different prediction tasks, we had ∼50 models different models
{fdtop} that were learned using different combinations of database (d), target population
(t) and outcome definition for the same outcome of interest (op). The developed models
fdtop have the form:

logit(y
dtop
i ) = Λ−1(y

dtop
i ) = xdt

i β̂
dtop
i ,

where Λ(.) is the logistic distribution function and β̂
dtop
i is a vector of coefficients {β̂dtop

i1 , β̂dt
i2 ,

..., β̂
dtop
iK }. Full code to develop the prediction models including target population/outcome

definitions and data extraction code is available on GitHub: https://github.com/ohdsi-studies/
Covid19VaccinePrediction.

3.5. Stability Metrics

As discussed in Section 2, different metrics have been proposed in the literature to quantify
model stability. These metrics typically summarize model stability with a single number,
which allows for a simple and quick comparison between different ML algorithms. However,
these metrics are not always intuitive.

We propose three intuitive steps to assess model stability for models that are linear in
the variables (like the developed models fdtop in our study):

1. How many variables are selected across models? We assessed differences in model size

by calculating the number of non-zero coefficients per model (
∑K

k=1 I[β̂
dtop
ik ̸= 0] for

all d ∈ D, t ∈ T ).

2. Are the same or different variables included across models?

a. Full model We assessed the stability of the chosen variable set using the stability
estimator proposed by Nogueira et al. (2018) for all prediction tasks (o ∈ O):

Φo = 1−
1
K

∑K
k=1 s

2
k

k̄
K (1− k̄

K )
,

where K is the total number of candidate variables, k̄ is the average number
of selected variables 1

F

∑F
f=1

∑K
k=1 I[β̂

f
k ̸= 0] across F variable sets, and s2k is

the unbiased sample variance F
F−1 ρ̂k(1 − ρ̂k) of the selection of variable k. We

opted for this metric as it can cope with any collection of variable sets (with
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varying number of variables), there is a known and finite range of values (0-1)
which makes the interpretation meaningful, and it has a correction for chance
(only reflecting systematic similarity in variable sets and not due to random-
ness) (Nogueira et al., 2018). Other metrics quantifying the stability of variable
selection algorithms can be used if desired.

b. Top 10/25 variables Most literature focuses on assessing the stability of the full
variable set, however, most attention is usually on the top (i.e. most important)
variables when interpreting models. Hence, we analyzed the top 10/25 variables
(as defined by largest absolute coefficients in LASSO) in more detail using the
same metric introduced above.

Besides that, we computed the overlap in the top 10 variables within each pre-
diction task. We performed a pairwise comparison between models, counting
the number of same variables among the most important 10 variables between
each pair of models. Note this is equivalent to the (similarity-based) Percent-
age of Overlapping Genes (POG) index measure proposed by Shi et al. (2006),
as the number of selected variables is constant across comparisons (k = 10).
We compared differences between the same/different databases and phenotype
definitions.

3. Is the direction of the effect of variables the same across models? Finally, differences in
the model coefficients and in particular the direction of effect are important for model
interpretation. A model coefficient represents the additive effect of a certain variable
given all other variables. If one of the variables in a model is removed, all other model
coefficients change and could even change direction. Therefore, we compared the sign
of each variable across models. For each variable occurring in at least three models, we

checked if the sign of the coefficient β̂
dtop
ik was the same or different across models. We

then computed the percentage of variables found with the same sign across models.
We also studied the variation in signs for the 100 most often selected variables across
models for each prediction task.

We used the above steps to evaluate the stability of models within each prediction task.
Finally, we linked the stability to the internal and external discriminative performance of
models as measured by the AUC.

4. Results on Real-world Data

We developed prediction models for 9 outcomes of interest x 3-4 phenotype definitions x
3 target population definitions x 7 databases to evaluate the stability of models. Stability
was assessed in terms of the number of selected variables (Section 4.2), the similarity of
selected variables (Section 4.3), and the sign of variables across models (Section 4.4). We
end by investigating the clinical impact of model stability by evaluating the internal and
external predictive performance of models.

4.1. Prediction Tasks Data Size

The size of the target cohort and corresponding number of outcome cases across the de-
veloped prediction models are summarised in Figure 1. The number of patients in the
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target populations was relatively large and stable (on average 1, 678, 441-1, 824, 745 across
prediction tasks), but the number of outcomes varied largely (on average 103-7, 790 across
prediction tasks).

As a result, not all databases were suitable to develop prediction models for each predic-
tion task. For example, IQVIA Germany had insufficient numbers for some outcome defini-
tions (20 out of 28) and JMDC did not contain information on influenza vaccination (thus
misses 1 target population). A total of 457 models have been developed successfully, they
can be explored online: http://data.ohdsi.org/PatientLevelPredictionRepository.

(a) (b)

Figure 1: Boxplot of the size of the target population (a) and number of outcome cases
(b) across databases and phenotype definitions showing large differences between
prediction tasks, especially in the number of outcomes.

4.2. How many variables are selected across models?

The impact of using different databases and phenotype definitions on the size of models (as
measured by the number of variables) are shown in Figure 2. There was a large variation in
the number of selected variables, from a minimum of 2 variables (for anaphylaxis, appen-
dicitis, disseminated intravascular coagulation, and pulmonary embolism) to a maximum
of 1436 variables (for non-hemorrhagic stroke). Figure 2b shows a higher number of out-
come cases generally leads to more variables being selected using LASSO logistic regression.
However, comparing the number of variables against the size of the target population did
not indicate a clear trend (see Figure 2a). We found that a smaller target population often
has a smaller model, but not that a larger target population necessarily leads to a larger
model (here model size varies and might be more related to the number of outcome cases).
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(a) (b)

Figure 2: Scatterplot of the size of the target population (a) and number of outcomes (b)
versus the number of selected variables per prediction task (ordered by a decreas-
ing number of outcomes). Each point represents a developed model.

To further investigate the relation between the number of outcomes and model size,
we split the results per database (see Figure 7 in Appendix C). This demonstrates that
phenotype definitions including a higher number of outcomes result in larger models also
within the same database.

4.3. Are the same or different variables included across models?

Next, we investigated the stability of the chosen variable set. Figure 3 visualizes model sta-
bility across prediction tasks using the stability estimator Φ (see Section 3.5). We observed
overall model stability is relatively poor, with a maximum value of 0.18 across prediction
tasks (maximum stability is 1). The top 10/25 variables, however, were slightly more stable
with a maximum value of 0.44. This means there is less variation in the variables selected
as top variables as compared to the entire model.

Again, we observed a relation with the number of outcomes. A higher average number of
outcomes is positively correlated with stability of the chosen variable set (Pearson’s ρ=0.89,
95% CI [0.54,0.98]). We further observed a larger average size of the target population is
negatively correlated with stability of the chosen variable set (Pearson’s ρ=-0.85, 95% CI
[-0.97,-0.44]).

A more in-depth analysis of the top 10 variables is shown in Figure 4. Note that we did
not investigate within-sample variance (same D, T, O) as further discussed in Section 5.
This shows the top 10 variables for non-hemorrhagic stroke and the top 10 variables for acute
myocardial infarction are quite similar across models developed within the same database,
even when a different target population and/or outcome definition was used. However,
this is not the case for the tasks predicting encephalomyelitis and Guillain-Barré syndrome,
where we see hardly any overlap, even within the same database. For the prediction tasks
in this study, this suggests that the impact of different target population and/or outcome
definitions was limited when the number of outcome cases is sufficiently high. However, the
influence of database choice was substantial, as can be seen from the low overlap across all
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(a) (b)

Figure 3: Graph visualizing model stability Φ as defined by Nogueira et al. (2018) versus
the average size of the target population (a) and average number of outcome cases
(b) across prediction tasks.

prediction tasks for models developed on different databases. This means that the top (i.e.
most important) variables differed across databases.

A list of the 10 most often selected variables across models for each prediction task is
included in Appendix C.

4.4. Is the direction of the effect of variables the same across models?

Finally, we investigated how often the sign of the coefficient for a given variable is the same
(i.e. always positive or negative) across prediction tasks. We computed the percentage of
variables with the same sign across prediction tasks (see Appendix C), we found this is
highest for disseminated intravascular coagulation (54%) and lowest for non-hemorrhagic
stroke (27%). The prediction tasks with a lower average number of outcomes, have a slightly
higher percentage of same sign variables. This can be explained by the fact that these models
were less stable, leading to more variation in the selected variables, and therefore less often
contained the same variables (of which we could investigate the similarity of signs). Figure
5 shows the variation in signs for the 100 most often selected variables for each prediction
task. Bars that are a single color indicate consistency in the sign of the coefficient (always a
positive coefficient across models or always a negative coefficient across models). Bars that
are green and red indicate that the coefficient was positive in some models and negative
in others. Overall, it seems that the sign of the coefficient can vary greatly even for the
top variables. We do not observe clear difference between prediction tasks, but less selected
variables seem more likely to flip sign. These results clearly highlight the issue of interpreting
the developed prediction models for ‘risk factor’ effect, as the effect often alternates between
a positive and negative association.
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Figure 4: Boxplots showing the overlap in the top 10 variables as defined by counting the
number of common variables between each pair of models for same/different
database (D), target population definition (T), outcome definition (O) across
models. Each point represents a developed model, colors indicate the correspond-
ing prediction task (ordered by a decreasing number of outcomes).

4.5. Model Performance

Finally, we investigated the relation between stability and discriminative performance (AUC)
for the nine prediction tasks (see Figure 6). The average AUC was slightly lower and more
variable in new databases (external validation) compared to the same database (internal
validation), but overall the performance was comparable. Prediction tasks for which the
models were more stable had a higher internal (Pearson’s ρ=0.76, 95% CI [0.21,0.95]) and
external (Pearson’s ρ=0.72, 95% CI [0.10,0.94]) predictive performance on average. How-
ever, both performance and stability may be influenced by the complexity of the prediction
task.
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Figure 5: Stacked barplot visualizing the number of times variables are selected and the
percentage of times these variables had a positive or negative sign for each pre-
diction task (ordered by a decreasing number of outcomes). The plot is limited
to the 100 most frequently selected variables. The number in brackets specifies
the number of successfully developed models for each prediction task.

Figure 6: Internal and external predictive performance as measured by the area under the
receiver operator curve (AUC) for each prediction task. The black line represents
the smoothed conditional means.
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5. Discussion

We investigated model stability by training over 450 prediction models. For the nine predic-
tion tasks in this study (corresponding to different COVID-19 vaccine outcomes of interest),
that included ∼50 models per task, we found low similarity between models for the same
task. This suggests that the developed models are unstable both in terms of the variables in-
cluded in the model and in the sign of their coefficients. Therefore, the study design choices
are likely to impact the results obtained by researchers interpreting LASSO regression to
identify ‘risk factors’. This is problematic and we recommend either investigating model
robustness across settings or using alternative methods for ‘risk factor’ detection such as
univariate analysis.

Model stability is important, but few published prediction models perform sensitivity
analyses to investigate the stability of models to the choice of database, target popula-
tion, and outcome phenotype definition. This study is currently the largest of its kind to
investigate model stability.

The results show that model stability, measured in terms of the stability of the selected
variables, is poor across the prediction tasks but slightly better for the top (i.e. most impor-
tant) variables. We found a larger number of outcomes typically leads to larger models. This
is in agreement with findings of John et al. (2022), who showed that model size went down
when a smaller training sample was used, keeping the outcome proportion constant (i.e. a
reduced number of outcomes). Furthermore, we found that a larger number of outcomes is
positively correlated with a more stable variable set. For a larger target population, we find
the opposite relation (less stability), which might be due to a higher number of available
candidate variables. Moreover, we showed differences in the top variables are mostly due to
database choice and not due to using different target population and/or outcome phenotype
definitions (as long as the number of outcome cases is sufficiently high). This large impact
of database choice might be explained by differences in population case-mix or availability
of variables between databases, leading to a shift in the top variables.

We showed that direction of effect (i.e. sign) of variables often changes across models;
only 27-54% of the variables for different prediction tasks never change sign. This is also
true for the top variables (those selected more often) and makes clinical interpretation of
the effect of potential ‘risk factors’ difficult. For LASSO regression (and more generally;
variable importance methods) the correlations between the variables are known to impact
the coefficients (importance of variables). For example, removing one variable out of a set
of correlated variables (that are also highly associated to the outcome) is unlikely to impact
a model’s performance and will make the removed variable seem less predictive than it
is, as one of the other variables is likely to take the place of the removed variable. Unless
correlations are accounted for, interpreting a prediction model for ‘risk factor’ effect is likely
to be problematic and we recommend that it should be avoided.

Recently, there is also an increasing interest in explainability; to create insight into
how and why models produce predictions (Markus et al., 2021). The results in this paper
show that prediction models are unstable even though the discriminative performance is
stable. This study highlights it is important to be careful when using LASSO regression
to identify ‘risk factors’ and not to over-interpret the developed models in general. The
focus of model evaluation is often internal predictive performance (when the model is used
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in the development database), with a growing awareness around the importance of external
validation (when the model is used in a new clinical setting) (Reps et al., 2020; Yang et al.,
2022). However, model stability is often not assessed and we recommend investigating
model stability when interpretability of a model is important (e.g. in the case of ‘risk factor’
detection). Model robustness is also recognized as area for improvement by Goldstein et al.
(2017). Alternatively, one can use more traditional methods for ‘risk factor’ detection such
as univariate analysis that do not have the same instability as LASSO regression. However,
differences between databases might still persist.

In the future, we hope to extend the experiment to include other algorithms. In par-
ticular, it would be interesting to evaluate stability-adjusted versions of LASSO regression
(e.g. Meinshausen and Bühlmann (2010)) and other model classes such as tree-based or
deep learning methods. Furthermore, it would be interesting to analyze model stability
beyond the direction of effect, by comparing the relative importance of selected variables.
Finally, investigating to what extent different variables represent the same concept (within
or across databases) (Sechidis et al., 2019) and how to best exploit the knowledge in different
databases for ‘risk factor’ detection are promising directions for future research.

Limitations We only investigate LASSO logistic regression and it is unknown whether the
results will generalize to other algorithms. Furthermore, this is a case study investigating
only a limited number of target population and outcome phenotype definitions and results
may depend on the selected prediction tasks. For example, model stability results might
be inaccurate if very poor phenotype definitions are used. However, evaluating phenotype
definitions for observational data is difficult in practice as there is typically no ground truth
(e.g., in claims data chart review is not possible). Results may further depend on the
complexity of the included prediction tasks. Finally, we did not investigate within-sample
stability (same database, same definitions), as we were not interested to isolate the effect
of study design choices, but rather to investigate the overall impact of different choices on
the stability of models.
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Küffner, and Ralf Zimmer. Reliable gene signatures for microarray classification: assess-
ment of stability and performance. Bioinformatics, 22(19):2356–2363, 2006.

Kevin Dunne, Padraig Cunningham, and Francisco Azuaje. Solutions to instability prob-
lems with sequential wrapper-based approaches to feature selection. Journal of Machine
Learning Research, 1:22, 2002.
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Appendix A. Database descriptions

• IBM MarketScan Commercial Claims and Encounters (CCAE) database represents
data from individuals enrolled in United States employer-sponsored insurance health
plans. The data includes adjudicated health insurance claims (e.g. inpatient, out-
patient, and outpatient pharmacy) as well as enrollment data from large employers
and health plans who provide private healthcare coverage to employees, their spouses,
and dependents. Additionally, it captures laboratory tests for a subset of the covered
lives. This administrative claims database includes a variety of fee-for-service, pre-
ferred provider organizations, and capitated health plans.

• Optum® De-identified Electronic Health Record Dataset (Optum EHR) is a multi-
dimensional database containing information on outpatient visits, diagnostic proce-
dures, medications, laboratory results, hospitalizations, clinical notes and patient
outcomes primarily from IDNs. The EHR database includes representation of 80M
patients with at least 7M patients from each US Census region. Furthermore, the
database contains a provider network of 140,000+ providers at more than 700 hospi-
tals and 7,000 clinics. This database does not have eligibility controls but researchers
can track patient activity. More than 45% of patients have activity well over 3 years
and more than 30% of patients have activity spanning over 5 years.

• Optum® De-Identified Clinformatics® Data Mart (Optum DoD) is an adjudicated
US administrative health claims database for members of private health insurance,
who are fully insured in commercial plans or in administrative services only (ASOs),
Legacy Medicare Choice Lives (prior to January 2006), and Medicare Advantage
(Medicare Advantage Prescription Drug coverage starting January 2006). The popu-
lation is primarily representative of commercial claims patients (0-65 years old) with
some Medicare (65+ years old) however ages are capped at 90 years. It includes data
captured from administrative claims processed from inpatient and outpatient medical
services and prescriptions as dispensed, as well as results for outpatient lab tests pro-
cessed by large national lab vendors who participate in data exchange with Optum.
This dataset also provides date of death (month and year only) for members with both
medical and pharmacy coverage from the Social Security Death Master File (however
after 2011 reporting frequency changed due to changes in reporting requirements) and
location information for patients is at the US state level.

• IBM MarketScan Multi-State Medicaid (MDCD) database contains adjudicated US
health insurance claims for Medicaid enrollees from multiple states and includes hos-
pital discharge diagnoses, outpatient diagnoses and procedures, and outpatient phar-
macy claims as well as ethnicity and Medicare eligibility. Members maintain their
same identifier even if they leave the system for a brief period however the dataset
lacks lab data.
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• IQVIA Disease Analyzer Germany (IQVIA Germany) database consists of data col-
lected from physician practices and medical centers for all ages. Mostly primary care
physician data however some data from specialty practices (where practices are elec-
tronically connected to each other) and some lab data is included. Key attributes
include demographics, prescriptions as prescribed at brand level, diagnosis, lab mea-
surements, actions (e.g. referrals, sick notes).

• Japan Medical Data Center (JMDC) database is a payer based database that has
collected claims, ledger of the insured people and health checkup results from more
than 250 payers. It covers workers and their dependents aged under 74. It is longi-
tudinal and the largest one as commercially available database in Japan with more
than 13 million enrollments. All medical history of the insured people are available
and patient reported outcome research can be done through payers on-demand basis.
Those aged 66 or older are less representative as compared with whole population in
the nation. When estimated among the people who are younger than 66 years old,
the proportion of children younger than 18 years old in JMDC is approximately the
same as the proportion in the whole nation. Claims data are derived from monthly
claims issued by clinics, hospitals and community pharmacies. The number of claims
issued and added to JMDC database is about 6,000,000 per month. The size of JMDC
population is about 6% of the whole nation.

• IBM MarketScan Medicare Supplemental (MDCR) database represents health ser-
vices of retirees in the United States with primary or Medicare supplemental coverage
through privately insured fee-for-service, point-of-service, or capitated health plans.
These data include adjudicated health insurance claims (e.g. inpatient, outpatient,
and outpatient pharmacy). Additionally, it captures laboratory tests for a subset of
the covered lives.
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Appendix B. Phenotype definitions

Table 2: List of phenotype definitions used for each outcome. Abbreviations: ‘Broad’ =
broad definition including a wide range of diagnosis codes, ‘Narrow’ = narrow
definition including a smaller set of diagnosis codes selected by the U.S. Food and
Drug Administration, ‘IP’ = restricted to inpatient visits, ‘ED’ = restricted to
emergency department visits.

Outcome Phenotype URL

Acute myocardial
infarction

Broad https://atlas.ohdsi.org/#/cohortdefinition/383

Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/340
Narrow + IP https://atlas.ohdsi.org/#/cohortdefinition/388

Anaphylaxis Broad https://atlas.ohdsi.org/#/cohortdefinition/349
Broad + IP/ED https://atlas.ohdsi.org/#/cohortdefinition/407
Narrow https://atlas.ohdsi.org/#/cohortdefinition/389

Appendicitis Broad https://atlas.ohdsi.org/#/cohortdefinition/386
Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/344
Narrow https://atlas.ohdsi.org/#/cohortdefinition/390

Disseminated in-
travascular coagu-
lation

Broad https://atlas.ohdsi.org/#/cohortdefinition/385

Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/336
Narrow https://atlas.ohdsi.org/#/cohortdefinition/392

Encephalomyelitis Broad https://atlas.ohdsi.org/#/cohortdefinition/382
Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/346
Narrow + IP https://atlas.ohdsi.org/#/cohortdefinition/393

Guillain-Barré
Syndrome

Broad https://atlas.ohdsi.org/#/cohortdefinition/380

Broad + IP/ER https://atlas.ohdsi.org/#/cohortdefinition/343
Broad + IP/ER
(primary condi-
tion)

https://atlas.ohdsi.org/#/cohortdefinition/348

Hemorrhagic
stroke

Broad https://atlas.ohdsi.org/#/cohortdefinition/387

Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/341
Narrow + IP https://atlas.ohdsi.org/#/cohortdefinition/405

Non-hemorrhagic
stroke

Narrow https://atlas.ohdsi.org/#/cohortdefinition/408

Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/406
Narrow + IP https://atlas.ohdsi.org/#/cohortdefinition/397
Broad https://atlas.ohdsi.org/#/cohortdefinition/384

Pulmonary em-
bolism

Broad https://atlas.ohdsi.org/#/cohortdefinition/411

Broad + IP https://atlas.ohdsi.org/#/cohortdefinition/404
Narrow https://atlas.ohdsi.org/#/cohortdefinition/40022
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Appendix C. Additional results

Figure 7: Scatterplot of the number of outcomes versus the number of selected variables
per database. Each point represents a developed model, colors indicate the cor-
responding prediction task.

Table 3: List of top 10 most often selected variables across
prediction tasks (variable from condition domain∗ or drug do-
main †, positively (+) or negatively (-) contributing to out-
come risk in majority of models).

Task Variables

Acute myocardial infarction Heart disease∗(+), Age 65-69(+/-), Vas-
cular disorder∗(+), Male(+), Myocar-
dial disease∗(+), Platelet aggregation
inhibitors excl. heparin†(+), Ischemic heart
disease∗(+), Age 10-14(-), Age 15-19(-),
Hyptertensive disorder∗(+)
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Anaphylaxis Asthma∗(+), Adrenergics, inhalents†(+),
Traumatic injury∗(+), Cardiac therapy†(+),
Age 15-19(+), Blood and blood form-
ing organs†(+), Edema∗(+), Allergic
disposition∗(+), Male(+), Epinephrine†(+)

Appendicitis Male(+), Age 0-4(-), Abdominal pain∗(+),
Age 10-14(+), Age 15-19(+), Pain of truncal
structure∗(+), Age 20-24(+), Age 25-29(+),
Pain finding at anatomical site∗(+), Inflam-
matory disorder of digestive tract∗(+)

Disseminated intravascular coagulation Heart disease∗(+), Abnormal blood cell
count∗(+), Vascular disorder∗(+), Blood and
blood forming organs†(+), Measurement find-
ing outside reference range∗(+), Antineo-
plastic and immunomodulating agents†(+),
Antithrombotic agents†(+), Complication of
procedure∗(+), Hyperlipidemia∗(-), Kidney
disease∗(+)

Encephalomyelitis Antiepileptics†(+), Measurement finding out-
side reference range∗(+), Male(+), Fa-
tigue(+), Vascular disorder∗(+), Inflamma-
tion of specific body systems∗(+), Muscle
weakness∗(+), Nervous system†(+), Abnor-
mal blood cell count∗(+), Neuropathy∗(+)

Guillain-Barré syndrome Neuropathy∗(+), Peripheral nerve
disease∗(+), Essential hypertension∗(+),
Fatigue∗(+), Vascular disorder∗(+), Male(+),
General problem and/or complaint∗(+),
Arthropathy∗(+), Measurement finding above
reference range∗(+), Polyneuropathy∗(+)

Hemorrhagic stroke Bleeding∗(+), Lesion of brain∗(+), Vas-
cular disorder∗(+), Male(+), Seizure∗(+),
Age 10-14(-), Antiepileptics†(+), Antithrom-
botic agents†(+), Blood and blood forming
organs†(+), Drug dependence∗(+)

Non-hemorrhagic stroke Cerebrovascular disease∗(+), Hyptertensive
disorder∗(+), Heart disease∗(+), Cerbral
infarction∗(+), Lesion of brain∗(+), Age
65-69(+/-), Headache∗(+), Antithrom-
botic agents†(+), Blood and blood forming
organs†(+), Vascular disorder∗(+)
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Pulmonary embolism Vascular disorder∗(+), Antithrombotic
agents†(+), Blood and blood forming
organs†(+), Embolism∗(+), Obesity∗(+),
Secondary malignant neoplastic disease∗(+),
Soft tissue lesion∗(+), Primary malignant
neoplasm∗(+), Male(+), Heart disease∗(+)

Table 4: The percentage of variables with the same sign (relative to all variables that occur
in at least three models) for each prediction task.

Task %

Acute myocardial infarction 28
Anaphylaxis 45
Appendicitis 27
Disseminated intravascular coagulation 54
Encephalomyelitis 40
Guillain-Barré syndrome 44
Hemorrhagic stroke 36
Non-hemorrhagic stroke 27
Pulmonary embolism 41
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