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Abstract

Knowledge-based planning (KBP) is an automated approach to radiation therapy treatment

planning that involves predicting desirable treatment plans before they are then corrected

to deliverable ones. We propose a generative adversarial network (GAN) approach for pre-

dicting desirable 3D dose distributions that eschews the previous paradigms of site-specific

feature engineering and predicting low-dimensional representations of the plan. Experi-

ments on a dataset of oropharyngeal cancer patients show that our approach significantly

outperforms previous methods on several clinical satisfaction criteria and similarity metrics.

1. Introduction

Radiation therapy (RT) is one of the primary methods for treating cancer and is recom-

mended for over 50% of all cancer patients (Delaney et al., 2005). In RT, a linear accelerator

(linac) outputs high-energy x-ray beams from multiple angles around a patient to deliver a

prescribed dose of radiation to a tumor while minimizing dose to the healthy tissue. An RT

treatment plan is the result of a complex design process involving multiple medical profes-

sionals and several software systems. This includes specialized optimization software that

determines the beam characteristics (e.g., aperture shapes for each beam angle, dose deliv-

ered from each aperture) required to deliver the final dose distribution. The optimization

model takes as input a set of computed tomography (CT) images of the patient, various

dosimetric objectives and constraints, and other parameters that guide the optimization

process. The model outputs a treatment plan that is subsequently evaluated by an oncol-
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ogist. The oncologist usually proposes modifications to the plan, which then requires the

treatment planner to re-solve the optimization model using updated parameters. The total

process is labor intensive, time-consuming, and costly, as the back-and-forth between the

planner and oncologist is often repeated multiple times until the plan is finally approved.

The significant manual e↵ort associated with the current treatment planning paradigm,

along with the fact that RT plans are generally quite similar for patients with similar geome-

tries, has motivated researchers to investigate how automation can be used in the planning

process (Sharpe et al., 2014). A key enabler of automation is known as knowledge-based

planning (KBP), which leverages historically delivered treatments to generate new plans for

similar patients. Figure 1 depicts the two main components of a KBP-driven automated

planning system: (i) a machine learning model that uses CT-derived patient geometric

features to predict a clinically acceptable three-dimensional dose distribution (Appenzoller

et al., 2012; Yang et al., 2013; Shiraishi et al., 2015; Younge et al., 2018); and (ii) an op-

timization model that converts the prediction into a “deliverable” plan (McIntosh and

Purdie, 2017; Wu et al., 2017; Babier et al., 2018b). The second step is needed to ensure

the treatment plan produced by the machine learning model satisfies the physical delivery

constraints imposed by the linac.

A major drawback of most existing KBP prediction methods is their reliance on low-

dimensional hand-tailored features derived from patient geometry to predict new dose dis-

tributions. In contrast, we propose a new paradigm for generating KBP predictions that

automatically learns to predict a 3D dose distribution directly from a CT image. More

specifically, we recast the dose prediction problem as an image colorization problem, which

we solve using a generative adversarial network (GAN) (Goodfellow et al., 2014). GANs,

which have produced impressive results in other image colorization applications (Isola et al.,

2017; Zhu et al., 2017), involve a pair of neural networks: a generator that performs a task

and a discriminator that evaluates how well the task is performed. In our application, the

generator serves as a treatment planner that designs a treatment, while the discriminator

plays the role of the oncologist who critiques the generated dose distribution by comparing

it to the real treatment plan. Both neural networks train simultaneously on historical data,

e↵ectively replicating and aggregating the combined knowledge gained during the iterative

manual process used to design clinically acceptable treatments.

In this paper, we develop a novel automated treatment planning pipeline for oropha-

ryngeal cancer that uses a GAN to predict 3D dose distributions. In contrast to previous

machine learning methods, our approach does not require the pre-specification of an ex-

tensive set of feature variables for prediction. Instead, our model learns what features are

important to produce clinically acceptable treatment plans. We apply our KBP method-

ology to a dataset consisting of 26,279 CT images from 217 patients with oropharyngeal

cancer that have undergone radiation therapy. Approximately 60% of these images are

used to train the GAN, which is used to predict high quality dose distributions for the

remaining out-of-sample patients. These predictions are used as input into an optimization

model to produce deliverable plans. We compare our approach to several other techniques,

including three feature-based machine learning models and a standard convolutional neu-

ral network (CNN). We demonstrate that our approach outperforms all other models in

achieving several clinically relevant criteria and in matching the clinical (benchmark) plans.
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Figure 1: Overview of KBP-driven automated treatment planning pipeline.

Technical Significance We demonstrate the first use of GANs for generating radiation

treatment plans in cancer. We recast KBP prediction as an image colorization problem

for which GANs are known to perform well. Moreover, we provide the first full pipeline

comparison between di↵erent KBP prediction methods by optimizing the predicted dose

distribution and comparing the final result to deliverable plans. We find that, in this

setting, our GAN approach outperforms all other methods, including the latest in machine

learning-based KBP approaches, in meeting clinical criteria.

Clinical Relevance Oropharyngeal cancer is one of the most di�cult cancers to plan

a treatment for, and as a result, generating deliverable treatment plans is particularly

time consuming (Das et al., 2009). Our GAN approach automates the planning approach

producing, on average, plans that are superior to clinical ones in several key metrics. Our

site-independent method suggests similar performance for simpler sites, such as prostate

and stomach cancers, while showing that high-quality oropharynx treatment plans can be

automatically generated.

2. Related work

2.1. Knowledge-based planning

Many di↵erent approaches have been tested for the machine learning component of a KBP-

driven automated planning pipeline (cf. Figure 1). Query-based methods identify previ-

ously treated patients who are su�ciently similar to the new patient, and use the historically

achieved dose metrics as predictions for the new patient (Wu et al., 2009, 2011). Another

common approach uses principal component analysis (PCA), in conjunction with linear

regression, to predict dose metrics for new patients (Zhu et al., 2011; Yuan et al., 2012).

However, these well-established techniques only predict two-dimensional dose metrics. Re-

cent research has shown that 3D dose distribution predictions can also be generated using

random forest or neural network-based models (Shiraishi and Moore, 2016; McIntosh et al.,

2017; Nguyen et al., 2017). Nevertheless, for many of these approaches to work e↵ectively,

significant e↵ort must be spent in feature engineering, i.e., introducing features specific

to the cancer site. Furthermore, some of these approaches compare the predicted dose

distributions, rather than deliverable plans post-optimization, to the clinical plans.

For the optimization phase of KBP, there are two main approaches for turning pre-

dictions into treatments: dose mimicking (Petersson et al., 2016) and inverse optimiza-

tion (Chan et al., 2014). The dose mimicking model minimizes the L2 loss between the

predicted dose distribution and one that satisfies all physical constraints. Alternatively,

inverse optimization (IO) is a methodology that estimates parameters of an optimization

problem from its observed solutions (Ahuja and Orlin, 2001). In the RT context, IO finds

parameters, e.g., objective function weights, that allow a deliverable treatment plan to

re-create the predicted dose distribution as closely as possible (Chan et al., 2014). A key

3



Automated Radiation Therapy using Generative Adversarial Networks

advantage of inverse optimization is that it better replicates the trade-o↵s implicit in clinical

treatment plans (Chan and Lee, 2018).

2.2. Generative adversarial networks

GANs are a well-studied class of deep learning algorithms used in generative modeling,

i.e., in the creation of new data (Goodfellow et al., 2014). Although initially used to

artificially generate 2D images, and later 3D models (Wu et al., 2016), their success has

garnered increasing interest for healthcare applications. GANs have been used for medical

drug discovery (Kadurin et al., 2017), generating artificial patient records (Choi et al.,

2017; Esteban et al., 2017), the detection of brain lesions (Alex et al., 2017), and image

augmentation for improved liver lesion classification (Frid-Adar et al., 2018).

A GAN consists of two neural networks, a generator and a discriminator, working in

tandem. The generator G(·) takes an initial random input z ⇠ p
z

and attempts to generate

an artificial data sample x = G(z) (i.e., the 3D dose distribution). The discriminator D(·) is
a classifier that takes generated and real data samples, and tries to identify which is which,

i.e., D(x) 2 [0, 1] where 1 suggests the generated sample is satisfactory. The interaction

between the networks can be formalized mathematically as a minimax game. If x ⇠ pdata
is the probability distribution over the real data samples, then the game is defined as

min

G

max

D

n

V (G,D) = E
x⇠pdata [logD(x)] + E

z⇠pz [log(1�D(G(z)))]

o

.

GANs have been proven e↵ective in style transfer problems, where the generator input

z is a data sample corresponding to one style (or characteristic) and the output x is a

mapping to a di↵erent style (Isola et al., 2017; Zhu et al., 2017). For example, style transfer

can be used to transform grayscale images to colored photos (Sangkloy et al., 2017), in

facial recognition for surveillance-based law enforcement (Wang et al., 2017), and in 3D

reconstruction of damaged artifacts (Hermoza and Sipiran, 2017). Here, the generator G(z)

learns the mapping between styles that generates samples resembling the ground truth.

Since key structures in the output may be entangled with noise from the generator, the

desired output is often achieved by modifying the original minimax game with a penalty

term on large deviations between the real and generated samples:

min

G

max

D

n

V (G,D) + �E
x⇠pdata,z⇠pz [kx�G(z)k1]

o

, (1)

where � is a regularizer that balances the trade-o↵ between learning style and the real data.

3. Methods

We used contoured CT images and clinically acceptable dose distributions from the treat-

ment plans of past oropharyngeal cancer patients to train a style transfer GAN. We then

passed out-of-sample predicted dose distributions through an IO pipeline (Babier et al.,

2018b) to generate the final treatment plans. For baseline comparisons, we also imple-

mented several methods from the literature using the complete pipeline. Figure 2 shows a

high-level overview of this automated planning pipeline.
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Figure 2: An schematic of our KBP-based automated planning pipeline.

3.1. Data

We obtained treatment plans from 217 oropharyngeal cancer patients treated at a single

institution with 6 MV, step-and-shoot, intensity-modulated radiation therapy machine. All

plans were for a prescription of 70 Gy, 63 Gy, and 56 Gy in 35 fractions to the gross disease,

intermediate risk, and elective target volumes, respectively.

For each patient, we identified a set of targets and healthy organs-at-risk (OARs). Tar-

gets were denoted as planning target volumes (PTVs) along with the oncologist-prescribed

dose (e.g., PTV70 corresponds the target with the highest dose prescription). OARs in-

cluded the brainstem, spinal cord, right and left parotids, larynx, esophagus, and mandible.

Every voxel (a 3D pixel of size 4 mm ⇥ 4 mm ⇥ 2 mm) of a CT image was classified by

their clinically drawn contours. All voxels were assigned a structure-specific color, and in

cases where the voxel was classified as both target and OAR, we reverted to target. All

unclassified tissue was left as the original CT image grayscale.

3.2. GAN model

We first divided each 3D CT image into 2D slices of 128⇥ 128 pixels. The generator used

a single CT image slice to predict the dose distribution along that same plane without

considering the vertical relationship between di↵erent slices. This process was repeated for

every slice until a full 3D dose distribution was produced. Our training set consisted of all

2D slices from the 3D CT images for 130 patients, totaling 15,657 images. The CT images

from the remaining 87 patients were used for out-of-sample evaluation.

Our GAN learning model was built on the pix2pix style transfer architecture of Isola

et al. (2017). We used a U-net generator that passed a 2D contoured CT image slice through

consecutive convolution layers, a bottleneck layer, and then through several deconvolution

layers. The U-net also employed skip connections, i.e., the output of each convolution layer

was concatenated to the input of a corresponding deconvolution layer. This allowed the

generator to easily pass “high dimensional” information (e.g., structural outlines) between

the inputted CT image slice and the outputted dose slice. The discriminator passed a 2D

slice of the dose distribution along several consecutive convolution layers, outputting a single

scalar value. In the training phase, the discriminator received one real and one generated

dose distribution before backpropagation. We disconnected the discriminator after training,
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at which point the generator only received a contoured CT slice. We refer the reader to

Appendix A for additional details regarding the network architectures.

We used the loss function given by (1) with � = 90, and trained using Adam (Kingma

and Ba, 2014), with learning rate 0.0002 and �1 = 0.5 and �2 = 0.999 for 25 epochs. We

used the default Adam settings from Isola et al. (2017), as they were proven to be good for

a variety of di↵erent style transfer problems. While we swept through various values for �
and the number of epochs, we found these default settings to be su�cient, with minimal

subsequent improvement. We found it useful to stop training when the loss functions were

roughly equal; if the loss from the l1 penalty fell too low, the GAN began to simply memorize

the dataset. The code for all experiments, along with the parameter settings is provided

at http://github.com/rafidrm/gancer.

3.3. Plan generation

Predicted dose distributions were inputted into an IO pipeline to generate optimized plans.

The IO model determined the weights of a parametric “forward” optimization model given

a predicted dose distribution. The objective of the forward model was to minimize the

sum of 65 objective functions: seven per OAR and three per target. Terms for the OARs

included the mean dose, max dose, and the percentile (0.25, 0.50, 0.75, 0.90, and 0.975)

above the maximum predicted dose to the OAR. Similarly, terms for the target included

the maximum dose, average dose below prescription, and average dose above prescription.

The complexity of the KBP-generated treatment plan was constrained to match the clinical

treatment (Craft et al., 2007) where complexity represents a (convex) surrogate measure for

the physical deliverability of a plan. We note that in reality, there are additional constraints

in the IO pipeline that we omit for tractability. Thus, our notion of a deliverable plan does

not include all physical constraints. Physical parameters for the optimization model were

derived from A Computational Environment for Radiotherapy Research (Deasy et al.,

2003). To replicate the clinical plans, all KBP-generated plans were delivered from nine

equidistant coplanar beams at angles 0

�
, 40

�
, . . . , 320

�
. We used Gurobi 7.5 to solve

the inverse and forward optimization problems associated with the IO pipeline. Additional

details of the IO model can be found in Babier et al. (2018a).

3.4. Baseline approaches

We compared our GAN approach to generating predicted dose distributions with several

state-of-the-art techniques. We briefly describe the baseline approaches here.

• Bagging query (BQ): A look-up method identifies patients with similar geometries

who have undergone radiation therapy and outputs their doses as predictions. This

approach predicts dose volume histograms (DVHs), i.e., 2D summaries of the 3D dose

delivered to specific targets and OARs (e.g., Wu et al. (2009); Babier et al. (2018a)).

• Generalized PCA (gPCA): A method combining PCA with linear regression using

patient geometry features. Similar to BQ, this method also predicts DVHs (e.g., Yuan

et al. (2012); Babier et al. (2018a)).
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• Random forest (RF): Predicts dose to each voxel (3D dose prediction) using ten

customized features based on patient geometry (inspired by McIntosh et al. (2017)).

Additional details can be found in Appendix B.

• U-net (CNN): Predicts dose to each voxel in 2D slices from a CT image using a

U-net convolution neural network architecture (e.g., Nguyen et al. (2017)).

All baseline predictions were fed into the same IO pipeline as the GAN approach to ensure

a fair comparison between deliverable plans.

4. Results

4.1. Sample generated dose distributions

We observed that the style transfer function mapping the CT image to the predicted dose

distribution appeared easy to learn. This is because the GAN generated dose distributions

had the hallmarks of a deliverable plan, like the sharp dose gradients that are generated by

individual beams. However, there were subtle deliverability characteristics that the GAN

could not always identify. The optimization step enforced these physical deliverability

constraints to correct for these idiosyncracies. This result can be observed in Figure 3,

where five sample slices of a clinical, predicted, and optimized plan are presented.

4.2. Clinical criteria satisfaction

We measured plan quality by evaluating how frequently they satisfied the standard clinical

criteria for oropharyngeal cancer treatment plans; see Table 1. Clinicians commonly use

criteria satisfaction as a metric to evaluate plan quality and approve a treatment plan after

it satisfies a su�cient number of the criteria. Thus, each criterion (one per OAR and target)

was measured on a pass-fail basis depending on whether the mean dose D
mean

, maximum

dose D
max

, or the dose to 99% of the volume of that structure D99, was above or below a

given threshold. To facilitate the comparisons, we scaled the GAN and baseline treatment

plans so that their PTV D99 was equal to the PTV D99 of the corresponding clinical plan.

Table 2 presents the percentage of the GAN and baseline treatment plans that satisfied

the clinical criteria. We note that clinically acceptable plans typically cannot satisfy all

criteria simultaneously because of the proximity of the targets to the OARs and the com-

plexity of the head-and-neck site in general. We observed that the BQ and gPCA plans

tended to satisfy PTV criteria more frequently, which suggested that they may recommend

delivering a higher dose to the target relative to the clinical plan. However, they failed to

achieve mean and maximum dose criteria to the OARs (note: there are more than triple

the number of OAR criteria as PTV criteria once all plans are normalized to D99 of the

PTV70). On the other hand, the RF plans appeared to satisfy fewer clinical criteria associ-

ated with the target as compared to the clinical plans. The CNN plans achieved the closest

level of performance to the clinical plans. However, the GAN plans had the best overall

performance among all approaches. They o↵ered a balanced trade-o↵ between the OARs

and targets, and even outperformed the clinical plans on clinical criteria satisfaction.

The previous results focused on pass-fail performance with respect to the clinical criteria.

We also examined the magnitude of passing or failing via head-to-head comparisons of
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Figure 3: Sample of slices from a test patient. From top to bottom: contoured CT image

(generator input), clinical plan (ground truth), GAN prediction, and GAN plan

(post optimization).

the GAN/baseline plans to the clinical plans, and between the GAN and CNN plans (see

Figure 4). The x-axis in each figure is the di↵erence in Gray (Gy) between the KBP and the

clinical plans (KBP minus clinical) for the criterion on the corresponding y-axis. We found

that for each criterion, the majority of GAN plans outperformed their clinical counterparts

by several Gy (Figure 4(e)). This is a significant result given that the clinical plans were

heavily optimized and delivered to actual patients. The BQ, gPCA, and RF plans displayed

substantial variability in performance when compared to the clinical plan. Consistent with

Table 2, performance of the CNN plans were closest to the GAN plans although, as shown

in Figure 4(f), the GAN plans maintained a small, yet consistent, advantage.

Finally, we compared the KBP plans against the clinical plans using the gamma passing

rate (GPR) metric. GPR measures the similarity between two dose distributions on a voxel-

by-voxel basis, computing for each voxel, a pass-fail test. We considered the standard choice

of GPR, i.e., a 3%/3 mm tolerance (Low et al., 1998), which roughly means a voxel in the

evaluated dose distribution (KBP) “passes” if there is at least one voxel in the reference

dose distribution (clinical) within 3 mm that receives a dose that is within ±3% of the

reference dose. Table 3 summarizes the average GPR achieved over all KBP-generated

plans. A score of 1.0 means that every voxel has passed the criteria; in other words, the two

dose distributions were considered identical (within the tolerance). Overall, we observed
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Structure Criteria

Brainstem D
max

 54 Gy

Spinal Cord D
max

 48 Gy

Right Parotid D
mean

 26 Gy

Left Parotid D
mean

 26 Gy

Larynx D
mean

 45 Gy

Esophagus D
mean

 45 Gy

Mandible D
max

 73.5 Gy

PTV56 D99 � 53.2 Gy

PTV63 D99 � 59.9 Gy

PTV70 D99 � 66.5 Gy

Table 1: Clinical criteria used to evaluate all plans. D
mean

refers to the mean dose, D
max

the maximum dose, and D99 dose to 99% of the structure.

BQ gPCA RF CNN GAN Clinical

OAR criteria 61.6% 65.8% 71.5% 72.5% 72.8% 72.0%

PTV criteria 83.5% 85.7% 68.0% 76.3% 81.3% 76.8%

All criteria 67.6% 71.2% 70.7% 73.6% 75.2% 73.3%

Table 2: Frequency of clinical criteria satisfaction.

that the GAN plans generated dose distributions that most closely resembled the clinical

dose distributions, followed by the CNN, and then the gPCA plans. Notably, the GAN

dose distributions best resembled the clinical dose distribution around the target, which is

of primary importance. The GAN plans performed less well on the OARs, but this result

was expected given the results from Table 2, which indicated that the GAN plans achieved

more OAR clinical criteria than the clinical plan (i.e., the GAN was able to deliver a lower

dose to the OARs as compared to the clinical dose distribution).

BQ gPCA RF CNN GAN

All OARs 0.548 0.584 0.535 0.566 0.549

All PTVs 0.533 0.728 0.503 0.741 0.761

All Structures 0.536 0.669 0.518 0.670 0.675

Table 3: Average GPR for each population of KBP plans compared to clinical plans.

5. Discussion and Future Work

In this paper, we proposed the first GAN-based KBP method to generate radiation therapy

treatment plans. We trained our complete pipeline on 130 patients, tested on 87 out-of-

sample patients diagnosed with oropharyngeal cancer, and compared our technique with
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Figure 4: Head-to-head comparisons: (a)–(e) the plans from each KBP-generated model

versus their clinical counterparts where positive di↵erence implies the KBP-

generated plans were better; (f) the plans from the GAN versus the CNN. Upper

and lower boundaries of each box represent the 75th and 25th percentiles respec-

tively, and the vertical line in the box depicts the median. Whiskers extend to

1.5 times the interquartile range. The line across each plot provides a reference

for zero di↵erence.

several state-of-the-art planning methods including a query-based approach, a PCA-based

method, a random forest, and a CNN. All methods were evaluated on standard clinical

criteria for plan evaluation (i.e., OARs sparing and target coverage), showing that the

GAN plans outperformed all baseline KBP methods. We also demonstrated that the GAN

plans outperformed the clinical plans by satisfying additional criteria on OAR dose sparing

and target dose coverage. Finally, we used the gamma passing rate, a standard metric in

the radiation therapy literature, to evaluate the similarity of the full 3D dose distribution

between the KBP and clinical plans demonstrating that the GAN plans were the most

similar to clinical plans on average. Note that the performance of automated planning

methods should be measured based on their ability to re-create clinical quality plans with

minimal manual e↵ort. Of course, if the auto-generated plans manage to improve upon the

clinical plans, that would be even better.

Our approach eschews the classical paradigm of predicting low-dimensional represen-

tations, or engineering features, by training a generic neural network to learn desirable

dose distributions. Specifically, the GAN recasts KBP prediction as an image colorization

problem. Moreover, the GAN is trained by mimicking the iterative process between the
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treatment planner and oncologist; the generator network acts as the treatment planner by

designing dose distributions while the discriminator acts as the oncologist by determining

whether the plans are good or bad. The implication is that selecting the appropriate neural

network architecture may be su�cient when creating an automated KBP pipeline that gen-

erates deliverable plans. Further, our approach does not add site-specific feature variables

which suggests that the good performance we observe may not be limited to patients with

oropharyngeal cancer. Finally, since the GAN plans improve upon the clinical plans, it may

be useful to analyze the results to generate useful insights for practitioners.

We envision two interesting directions for future work. First, we plan to explore how

GANs can develop treatment plans for di↵erent cancer sites. By adding site labels, we

expect that a GAN can learn from the augmented training set of di↵erent cancer sites

to better develop plans for specific sites. Second, we hope to automate the preprocessing

stage by using uncontoured CT images. As neural networks show increasing promise for

automated image segmentation (i.e., tumor and healthy organ identification), we hope to

leverage this work to improve our treatment plan prediction model.

Acknowledgments

This study was approved by the institutional research ethics board. Support for this research

was provided by the Natural Sciences and Engineering Research Council of Canada.

References

R. K. Ahuja and J. B. Orlin. Inverse optimization. Operations Research, 49(5):771–783,
2001.

V. Alex, M. S. KP, S. S. Chennamsetty, and G. Krishnamurthi. Generative adversarial

networks for brain lesion detection. In Medical Imaging 2017: Image Processing, volume

10133, page 101330G. International Society for Optics and Photonics, 2017.

L. M. Appenzoller, J. M. Michalski, W. L. Thorstad, S. Mutic, and K. L. Moore. Predicting

dose-volume histograms for organs-at-risk in imrt planning. Medical physics, 39(12):7446–
7461, 2012.

A. Babier, J. J. Boutilier, A. L. McNiven, and T. C. Y. Chan. Knowledge-based automated

planning for oropharyngeal cancer. Med Phys, 45(7):2875–2883, Jul 2018a.

A. Babier, J. J. Boutilier, M. B Sharpe, A. L. McNiven, and T. C. Y. Chan. Inverse

optimization of objective function weights for treatment planning using clinical dose-

volume histograms. Phys Med Biol, 63(10):105004, May 2018b.

T. C. Y. Chan and T. Lee. Trade-o↵ preservation in inverse multi-objective convex opti-

mization. accepted to European Journal of Operations Research, 2018.

T. C. Y. Chan, T. Craig, T. Lee, and M. B. Sharpe. Generalized inverse multiobjective

optimization with application to cancer therapy. Oper. Res., 62(3):680–95, 2014.

11



Automated Radiation Therapy using Generative Adversarial Networks

E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating multi-label

discrete electronic health records using generative adversarial networks. arXiv preprint
arXiv:1703.06490, 2017.

D. Craft, P. Suss, and T. Bortfeld. The tradeo↵ between treatment plan quality and required

number of monitor units in intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol.
Phys., 67(5):1596–605, 2007.

I. J. Das, V. Moskvin, and P. A. Johnstone. Analysis of treatment planning time among

systems and planners for intensity-modulated radiation therapy. J Am Coll Radiol, 6(7):
514–7, Jul 2009. doi: 10.1016/j.jacr.2008.12.013.

J. O. Deasy, A. I. Blanco, and V. H. Clark. CERR: a computational environment for

radiotherapy research. Med. Phys., 30(5):979–85, 2003.

G. Delaney, S. Jacob, C. Featherstone, and M. Barton. The role of radiotherapy in cancer

treatment. Cancer, 104(6):1129–1137, 2005.
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Appendix A. Network architecture

The general network architecture was adapted from Isola et al. (2017). Contoured CT
slices were used as input to the generator as 3-channel, 128 ⇥ 128 images. We used a U-
net architecture, where the generator was comprised of an encoder and a decoder stage.
We used 4 ⇥ 4 2D convolutions with stride 2 and padding 1. Each convolution layer was
followed by a leaky ReLU and batch normalization. Deconvolution layers were followed by
50% dropout, ReLU, and batch normalization.

The encoder consisted of four downsampling layers. The first generated 64 channels,
and each subsequent layer downsampled by a factor of 2. This was followed by 2 bottleneck
layers, before the data was then passed through 4 upsampling layers. The output of each
downsample layer was concatenated to the input of the corresponding upsample layer. The
final output was a 3-channel, 128⇥ 128 slice.

The decoder consisted of five convolution layers, where the first four each downsample
the output by 2. The fifth, and last layer, mapped to a scalar output. Once again, we
applied batch normalization and leaky ReLU after the first four layers. The final layer was
passed through sigmoid activation.

Appendix B: Random forest architecture

Feature Description

Structure Structure that the voxel is classified as
y-coordinate Voxel’s positions on the y-axis in a slice
z-coordinate Plane of voxel’s slice

Distance to larynx Shortest path between voxel and the surface of the larynx
Distance to esophagus Shortest path between voxel and the surface of the esophagus

Distance to limPostNeck Shortest path between voxel the surface of the limPostNeck
Distance to PTV56 Shortest path between voxel and the surface of the PTV56
Distance to PTV63 Shortest path between voxel and the the surface of PTV63
Distance to PTV70 Shortest path between voxel and the the surface of PTV70

Influence Sum of influence matrix elements for the voxel

Table 4: The ten features used in the RF to predict the dose for any voxel.

The random forest used ten custom features outlined in Table 5 to predict the dose
delivered to each voxel in the patient. The RF was trained with ten trees, and default
settings with the randomForestRegressor from scikit-learn.
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