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Abstract

Cascade Learning (CL) is a new and alternative form of training a deep neural network in a
layer-wise fashion. This varied training strategy results in different feature representations,
advantageous due to the incremental complexity induced across layers of the network. We
hypothesize that CL is inducing coarse-to-fine feature representations across layers of the
network, differing from traditional end-to-end learning, advantageous for medical imaging
applications. We use five different medical image classification tasks and a feature local-
isation task to show that CL is a superior learning strategy. We show that transferring
cascade learned features from cascade trained models from a subset of ImageNet system-
atically outperforms transfer from traditional end-to-end training, often with statistical
significance, but never worse. We demonstrate visually (using Grad-CAM saliency maps),
numerically (using granulometry measures), and with error analysis that the features and
also errors across the learning paradigms are different, motivating a combined approach,
which we validate further improves performance. We find the features learned using CL are
more closely aligned with medical expert labelled regions of interest on a large chest X-ray
dataset. We further demonstrate other advantages of CL, such as robustness to noise and
improved model calibration, which we suggest future work seriously consider as metrics to
optimise, in addition to performance, prior to deployment in clinical settings.

1. Introduction

While most deep neural network (DNN) training start with an arbitrarily fixed architec-
ture, researchers have also explored adapting network architectures to the complexity of
a problem. Adaptive training has the advantage of training deeper networks with lim-
ited resources, since the features can be cached at any point in time. Examples include
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the pioneering work of resource allocating networks (Platt, 1991), and their function ap-
proximation and probabilistic variants (Kadirkamanathan and Niranjan, 1993; Roberts and
Tarassenko, 1994). A powerful member of this family of approaches is the cascade correla-
tion algorithm (Fahlman and Lebiere, 1990). Deep Cascade Learning (CL) (Marquez et al.,
2018), builds on cascade correlation algorithm, as an alternative way of training a DNN.
The motivations are to match architecture complexity to problem complexity in a con-
structive way as well as extracting coarse-to-fine representations. This learning paradigms
differs from traditional end-to-end (E2E) learning, whereby all of the layers of the network
are learned simultaneously, resulting in varied feature representations. Recent studies have
demonstrated, using information bottleneck theory, that CL has advantages with respect to
learning when to stop training a network (Du et al., 2021). Further work (Du et al., 2019;
Stumpf et al., 2020) demonstrates the superior performance of CL on downstream tasks.
Other learning paradigms, such as the Gradient Isolated Learning methods (Löwe et al.,
2019; Nøkland and Eidnes, 2019; Wang et al., 2021) are also being developed, though our
interest is on feature representation for medical imaging that can scale as opposed to local
learning and unsupervised methods.

DNNs remain state of the art for computer vision, including medical imaging, since
Alexnet championed the ImageNet LSVRC-2010 classification challenge (Krizhevsky et al.,
2012). While DNNs excel in terms of performance, they do suffer from being difficult to
interpret due to their complexity in addition to being poorly calibrated (Guo et al., 2017),
and unstable to noise corruption (Hendrycks and Dietterich, 2019). Interpretability, the
ability of a human to understand the link between the features learned and the predictions
made, is crucial to gain trust in these systems as they become integrated into clinical set-
tings. Image saliency maps (Simonyan et al., 2014) are one method of interpreting DNNs by
highlighting areas of an image to which the output decisions are most sensitive. In radiology,
saliency maps can be integrated into the workflow, allowing easy fusion with patient images
and computer-generated results (Reyes et al., 2020). In recent work, Grad-CAM (Selvaraju
et al., 2020) generates gradient-based saliency maps that enable visualisation of every DNN
layer. Assessing the uncertainty of a model’s results can also be used to enhance inter-
pretability by understanding which images or areas of an image the model identifies as
being difficult (Reyes et al., 2020). Uncertainty estimates can also be viewed as system
verification methods; they can be used as a proxy for trust in a system, as a radiologist
can verify the confidence levels of a model’s predictions. In addition to interpretability,
and the importance of reliable uncertainty estimates, noise robustness is also important in
the medical context. In real clinical settings, the existence of noise is inherent in the data
capture process (Gravel et al., 2004). Sources of noise can be from hardware, algorithm
design and parameter settings (Zhang et al., 2020).

In the medical domain, the precondition of large labelled datasets is not always feasible
as medical image data often comes from small disease populations, requires costly expert la-
belling, and has potential privacy implications, motivating research on transfer learning (Bar
et al., 2015; Chen et al., 2015; Schlegl et al., 2014; Tajbakhsh et al., 2017; Van Ginneken
et al., 2015; Wang et al., 2017). There are two directions that deep learning based transfer
learning has been explored in the medical domain. The first set of works (Arevalo et al.,
2015; Bar et al., 2015; Carneiro et al., 2015; Chen et al., 2015; Shin et al., 2015; Van Ginneken
et al., 2015) transfers knowledge using pre-trained networks from natural images as a feature
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extractor, while the majority of the convolutional layers are fixed during transfer on the
target domain. The second set of works (Margeta et al., 2017; Shin et al., 2016; Tajbakhsh
et al., 2017) fine-tune on the downstream task. In particular, Tajbakhsh et al. (Tajbakhsh
et al., 2017) fine-tune in a layer-wise fashion on the medical domain. Raghu et al. (Raghu
et al., 2019) report a critical appraisal of transfer learning from E2E networks, showing
little or no improvement on two benchmark medical image tasks. An opposite conclusion
is obtained by Ke et al. (Ke et al., 2021), demonstrating that the family of architectures,
as opposed to the model size, determines performance, showing performance improvements
using ImageNet pre-training for transfer. Recently, transferring features via self-supervised
learning in the source domain has been considered (Azizi et al., 2021; Ericsson et al., 2021;
Goyal et al., 2019; Truong et al., 2021). All of the methods mentioned above are transferring
features from networks that have been trained in an end-to-end fashion.

In this paper, we demonstrate for the first time the superior feature representations
learned using CL, considering five medical imaging classification tasks and one localisation
task. We consider the downstream task of transfer learning, where CL shows particularly
promising results, outperforming traditional methods. Particularly statistically significant
improvements in low data regimes are observed. We even show comparable performance on
large data regimes, motivating transfer as a resource efficient strategy rather than training
a large network from scratch. Our motivation comes from the nature in which CL works,
resulting in a varied feature representation strategy to E2E training. Whereas in E2E train-
ing, representations learned in layers across the network depend largely on the trajectory
along which the error function is minimized, in CL there is a progression in complexity as
more and more layers are added. Thus, one could expect that early layers, trained as low
capacity networks, are able to absorb coarse features while later layers will be trained to
extract specific features of the problem. This motivates potentially better transferability
from early layers of the network, which we confirm in our experiments.

We further quantify the representational difference between CL and E2E training in
terms of: feature localisation and robustness. We show both visually and numerically that
the features learned by TCL are more localised to the discriminative target area of interest.
We show the errors made by TCL differ to TE2E, motivating a combined approach which
outperforms the individual approaches on every dataset, resulting in state of the art medical
imaging classification performance. We demonstrate that TCL saliency maps have high
granulometry, indicating more concentrated feature activation (E2E saliency maps tend to
be less focused). Finally, we show the superiority of TCL in terms of robustness to noise
as well as offering better model calibration, and therefore, better uncertainty estimates.
In summary, we are showing strong evidence for the use of CL for better medical feature
representations.

1.1. Generalizable Insights

The generalizable insights our particular approach and empirical work reveal are as follows:

• We demonstrate that a CL strategy (as opposed to traditional E2E learning), has im-
proved feature representations in DNNs for medical imaging tasks and we recommend
that CL be considered by researchers and clinicians in this domain.
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• We consider the problem of how to learn optimal features for medical imaging and
find that a combined strategy of TCL and TE2E will result in optimal performance
on five medical imaging downstream tasks (see Figure 2).

• We consider the problem of when to transfer for medical imaging. Our results in
Figure 2 demonstrate that for small data regimes, TCL will perform as good as or
better than TE2E or learning from scratch.

• We demonstrate that CL learns different features, with coarser features in early layers
and finer features in later layers (see Figure 5) whereas end-to-end learned features
have more evenly distributed granulometry across layers. The features learned with
CL are therefore different and we show they are better suited for other factors, such
as localisation and robustness.

• We demonstrate that CL provides superior representations for several types of medi-
cal images (chest X-rays radiography, histopathology, dermatoscopy and endoscopy).

• We demonstrate the superiority of our CL framework in terms of feature localisation
using feature visualisation techniques, granulometry results, as well as with experi-
ments on a expert labelled dataset.

• We suggest to evaluate systems beyond simple classification performance and con-
sider issues such as interpretability, calibration as well as robustness when presenting
machine learning models to the medical community.

2. Methodology

2.1. Deep Cascade Learning

Cascade Learning (CL) (Marquez et al., 2018), illustrated in Figure 1, is an iterative ap-
proach to train a deep neural network in a layer-wise fashion. In contrast to E2E learning,
whereby all layers of a network are trained simultaneously, CL trains a network one layer at a
time, freezing the previously trained layers. The aim is to circumvent the vanishing gradient
problem by ensuring that the output is always adjacent to the layer being trained. However,
in this paper we show that such training also leads to improvement in several transfer learn-
ing tasks. Inspired by Belilovsky et al. (Belilovsky et al., 2019), when training the nth layer
of the cascade convolutional filters, we add a randomly initialised auxiliary classifier (AC),
consisting of k convolutional layers and f fully connected layers. ACS , denoting an AC at
the source, has been shown to improve performance (Belilovsky et al., 2019). We set k and f
to be small because our goal is to transfer features from pretrained models and not make the
target domain networks too complicated. Note, we add an AC to the E2E framework as well,
ensuring identical architectures for a fair comparison across learning paradigms for transfer
as demonstrated in Figure 1. The complete network architecture is shown in Table S2. Code
is available: https://github.com/FrankWJW/cascade_transfer_learning_medical

2.2. Transfer with Cascade Learning

When transfer via cascade learning (TCL) is applied at the nth layer, the network from the
source domain up until layer n (including layer n though excluding ACS), is copied to the
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Figure 1: Schematic illustration of cascade learning (CL), transfer cascade learning (TCL)
and end-to-end (E2E) learning. ACS and ACT refer to the auxiliary classifiers in
the source and target domains, respectively. Note, ACS is also included in the
E2E framework ensuring transfer comparison across learning paradigms.

target domain. This is illustrated by bounding boxes in Figure 1. The auxiliary classifier
in the target domain, denoted ACT , is randomly initialised and trained on the target data.
We compare the performance of transferring each CL versus E2E individual layers, ob-
serving significant differences in the features learned and improved performance with TCL,
in addition to other advantages. Considering time complexity (wall clock) within limited
data regimes (i.e. small to medium sized datasets) where transfer learning is beneficial, the
difference in training time between CL and end to end learning is negligible.

2.3. Source Domain Datasets

We use natural images from the ImageNet dataset (Deng et al., 2009) as the source for all of
our experiments. ImageNet pre-trained models are widely used as the source of transfer (Ke
et al., 2021; Shin et al., 2016; Tajbakhsh et al., 2017; Wang et al., 2017).

In this paper, we are comparing learning paradigms which would require training Im-
ageNet from scratch. As this is infeasible due to limited computing resources and time,
particularly for CL paradigms. Instead we consider a subset of ImageNet, which we refer to
as ImageNet23. This subset includes 29, 900 natural images, obtained from the 23 classes
that overlap with the CIFAR-100 dataset (Krizhevsky, 2009). This choice is rather arbi-
trary and done with the purpose of keeping the feature extractor simple. Searching for a
good source problem, i.e. classes in the source domain that could offer better feature, is an
open though computationally intractable problem.
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2.4. Target Domain Datasets

We conduct classification experiments on five target datasets considering a range of medical
imaging tasks and target dataset sizes. We consider two chest X-ray datasets, one of which
is imaging of Covid-19 patients, as well as gastrointestinal disease detection via endoscopy
images, ductal carcinoma from whole slide images, and a skin lesion detection dataset via
dermatoscopic images. Our localisation experiments are conducted on a separate dataset as
this is the only one that contains bounding box labels required for the task. The datasets
used in this paper are all publicly available. We summarize some of their attributes in the
following paragraphs.

Kvasir (Pogorelov et al., 2017) is a dataset containing endoscopy images of gastroin-
testinal tracts. Each endoscopy image is labelled by one or more medical experts from
Vestre Viken Health Trust (VV) and Cancer Registry in Norway. The data consists of 4000
images with 8 classes showing the anatomical landmarks (Pogorelov et al., 2017). Each
class contains 500 images with different resolutions: 720 × 576 to 1920 × 1072. We resize
images to 256× 256 by downsampling.

The first iteration of the BIMCV COVID-19+ (Vayá et al., 2020) dataset contains
1380 chest X-rays as well as associated medical reports and metadata from the Valencian
Region Medical ImageBank (BIMCV). Up to September 2021, the dataset contained 13, 615
samples from 4, 896 patients. In order to select data for this paper, we perform two-steps:
first, we select samples where the modality is chest X-ray; second, we select samples with the
associated finding containing the keywords Covid-19 or normal. After the selection process,
we obtain in total 3705 samples, which we store as uncompressed gray-scale .png file, in 16
bit format. We conduct an additional pre-processing step using DICOMWindowCenter and
WindoWidth, converting to Monochrome 2 photometric interpretation, resizing the images
to 224×224 resolution (Vayá et al., 2020) followed by data augmentation. To be consistent
with the pre-trained model, the images are broadcast to 3 channels.

The Invasive Ductal Carcinoma (IDC) (Cruz-Roa et al., 2014) dataset was collected
from 162 patients diagnosed with IDC. 113 slides of Whole Slide Image (WSI) were selected
for training and 49 slides were held out for testing. Each WSI is sliced into 50× 50 image
patches, with corresponding ground truth labelled by an expert pathologist. This process
yields over 21, 000 labelled image patches. The label distribution of this dataset indicate a
strong class-imbalance, hence weighted sampling is used to keep mini-batches class-balanced
during training. To be consistent with pre-trained models, the image was up-sampled into
224× 224 resolution.

The HAM10000 (Tschandl et al., 2018) dataset is a large collection of multi-source
skin lesion images. The original data consists of 10, 015 samples as a training set. There
are in total 7 classes corresponding to different categories of pigmented lesions. Original
image from the dataset has resolution 600 × 450 in .jpg format. The experimental setup
and handling of class-imbalance is the same with the IDC dataset.

CheXpert (Irvin et al., 2019) is a large dataset containing 224, 316 chest X-ray images
from 65, 240 patients. Each data instance has multiple binary labels that represent positive
or negative observations for 14 types of disease. Multiple positive observations can be
labelled in a chest X-ray image. Even though the dataset introduces uncertainty in the
labels, in our experiment, we focus on transferring features using CL and ignore uncertain
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labels by mapping them into negative cases. The data has been resized to 224 × 224 and
broadcast to 3 channels.

For our localisation experiments in Figure 6, we use the ChestX-ray8 (Wang et al.,
2017) as it contains board-certified radiologist bounding box labels. While ChestX-ray8
contains 108, 948 frontal view chest X-ray images from 32, 717 patients (Wang et al., 2017),
we use the 983 images which have been labelled with bounding boxes in order to evaluate
our proposed method.

2.5. Feature Visualisation via Grad-CAM

Feature visualisation is particularly important in the medical context to add interpretability
to the deep neural network predictions (Arias-Londono et al., 2020; Irvin et al., 2019; Reyes
et al., 2020; Simonyan et al., 2014; Wang et al., 2017). One of the previous work, saliency
maps (Simonyan et al., 2014) is one way of interpreting the effect of each pixel given an
input image I on the final prediction. This is done by taking the gradient of the class score
(Sc) with respect to the input image itself as follows:

w =
∂Sc

∂I
(1)

The result will give us an activation map of the degree to which a pixel contributed to
that class score. This gives us insight into what the network is focusing on with respect to
the input image for each particular class prediction.

The Grad-CAM (Selvaraju et al., 2020) method generates a heat-map of the input
pixels, telling us where the model is looking at to make a particular prediction. Grad-CAM
considers how a change in a particular location i, j, in the activation map Ak, creates a
change in the class activation yc by computing this gradient (Equation 2). This is accu-
mulated by summing the values over the entire activation map indexed by k to give αc

k.
The scalar αc

k represents neuron importance for the kth feature map and class c. Finally,
LGrad−CAM computed as Equation 3, where Z denotes the total number of pixels in the
feature map. Equation 3 accumulates the neuron importance over all the activation maps,
followed by the ReLU non-linearity to remove the negative components. αc

k < 0 implies
that a change in Ak will decrease prediction score yc, which should be avoided as those
feature maps that improve the prediction are of interest (Selvaraju et al., 2020), hence the
ReLU.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(2)

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
(3)

2.5.1. Granulometry Analysis

Features extracted by cascade and end-to-end trained models differ in their distributions.
We postulate that cascade learning extracts coarse features in its early layers and progres-
sively finer ones in later layers owing to each layer being trained having limited flexibility
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of function fitting. This, we believe is one reason for early layers of cascade trained mod-
els offering better transfer to a different domain because these layers have not learnt fine
details of the source domain. We use an image processing technique known as granumo-
letry (Dougherty et al., 1989) to quantify this difference applied to the sensitivity maps
between images and corresponding class predictions. Granulometry is a quantitative mea-
sure of how contiguous regions in an image space are, with coarse images carrying higher
values than those in which features are distributed as large numbers of small patches. The
morphological image processing operations leading to this analysis are shown in Algorithm 1.
We also give a synthetic example illustrating this in Appendix Figure S1.

In our implementation of granulometry, we take activated regions with the top 25%
brightness to do binarisation, filtering out regions with negligible brightness. From the
distribution of different sized regions, we take the number of median regions as the output of
the granulometry algorithm, avoiding the case where all active regions have low brightness.
We also include count of connected areas to improve the granulometry measure. The count
of connected areas is calculated as the area of connected regions divided by the number of
fix sized elements. For example, if the area of connected regions is fixed for a mask, the
increasing number of small connected grains will result in small granulometry score as the
activated regions are scattered instead of concentrated. Finally, from each layer we get a
normalised granulometry score. We use scipy.ndimage library to compute morphological
image processing operation. We are providing code for an illustrative problem. Please refer
to section 2.1 for the GitHub link.

2.5.2. Robustness to Noise and Confidence Calibration

Two other criteria by which medical applications of computer vision should be judged
are robustness to noise and calibration. A trained model, when deployed, should be able
to cope with instrument noise. Noise could be of two types: systematic effects such as
calibration errors or instruments made by different manufacturers, or random noise arising
in acquisition. Here, we address random additive noise in the measurement process and
quantify how much the different methods considered degrade at increasing levels of signal
to noise ratio. Addressing systematic variations (which are also known as covariate shift)
is beyond the scope of the present work.

The second issue we consider is calibration. Confidence calibration is another important
aspect for the successful deployment of deep learning systems, particularly in automatic
health care (Guo et al., 2017). A well calibrated model will inform human experts to take
over the final decision when the confidence of diagnosis is low. Recent analysis shows that
modern deep neural networks are not well calibrated (Guo et al., 2017), meaning their
prediction probability estimates are not representative of the true correctness likelihood of
the labels. In this paper, we measure Expected Calibration Error (ECE) (Guo et al., 2017)
to quantify the model uncertainty:

P(Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1] (4)

Ŷ is the predicted label and Y is a random variable based on ground truth; P̂ is the
confidence score (represented by softmax probability) and p is another random variable
representing a group of confidence score have value p. Then ECE is computed from Equa-
tion 4 by using a binning method to split data into equal-sized bins. Data belonging to
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each bin has the same confidence level, then the absolute difference between the accuracy
and confidence within the group of data in the bin Bm is measured as:

ECE =

M∑
m=1

|Bm|
n
|acc (Bm)− conf (Bm)| (5)

where m is the bin index and n is number of samples.

Algorithm 1 Pseudocode of Granulometry Score Computation

Data: A: A saliency map of an image with size m× n
Result: GS: The granulometry score;
Initialisation:
B(u)← A structuring element with size u, e.g., an ellipse
AS ← The list of grain (connected areas) size
M ← Binary mask of A. Each element of the mask is “True” or “False”
C ← A list of grain counts.
M ← A < 75% quantile of A. ▷ This step filters out regions having low brightness in the
saliency map.
AS ← [1, int(0.25×max(m,n)/20), int(0.75×max(m,n)/20), int(max(m,n)/20)]1

for s in AS do
newA←morphological opening(M,B(s)).
C ← append the counts of connected areas in newA.

end
GS ← the median of C.

3. Results

3.1. An Comparison of Varied Learning Approaches for Transfer

We have performed numerous experiments comparing transfer with CL, transfer with E2E
learning, as well as learning directly on the data (full range of experiments documented in
the Appendix). In general, we conclude that TCL outperforms TE2E particularly on the
smaller data regimes, reconfirming previously published work (Du et al., 2019) and also
reconfirming that smaller models tend to transfer better (Ke et al., 2021).

The results in Figure 2 summarise the performance of TCL versus TE2E, as well as
the combined approach on five distinct medical datasets. Note, the results in this figure
have been tuned for optimal hyper-parameter selection over all experiments. Figure 2
demonstrates the superior performance of TCL against TE2E on all of the medical imaging
tasks with statistically significant cases (p ≤ 0.05, two-sided pair sample t-test) denoted
by ∗ on the x-axes. Furthermore, due to errors made by TCL and TE2E approaches
being different, model combination achieves better classification accuracies in all cases. We
empirically show that a combined approach can improve the performance in all cases.

1. Numbers are chosen based on trial and error.
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(a) HAM10000 (b) IDC

(c) Kvasir (d) BIMCV

(e) CheXpert

Figure 2: Performance comparison on five medical datasets. The combined approach con-
sistently improves performance. We report statistically significant differences
between TCL and TE2E via two-sided paired sample t-test (p ≤ 0.05), with sig-
nificant cases labeled by ∗ on the x-axes.
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Interestingly, the error analysis of TCL versus TE2E Figure 3 reveals different errors
made by the learning paradigms ((a) vs. (b)), and therefore likely different feature repre-
sentation learning. We use these results to try a combined transfer approach, averaging the
predicted outputs of both models. Full results of combining approach are shown in Fig-
ure 2. We also demonstrate via Grad-CAM saliency maps and granulometry measures that
the features learned are indeed different, and provide quantitative and qualitative evidence
that TCL features are more localised, providing better descriptors for interpretability and
prediction. We found TCL outperforms current self-supervised transfer learning framework
with direct comparison to the reported result in (Truong et al., 2021). The result shows
in Table S1. We provide an evidence that even using a network architecture with low pa-
rameter complexity and train with lower volume source data, CL could still achieve large
improvement even comparing against complex framework trained via full scale ImageNet
dataset, in the medical domain.

(a) TCL (Layer 3) (b) TE2E (Layer 3) (c) Combined (Layer 3)

Figure 3: Confusion matrices of (a) TCL and (b) TE2E learning methods on the
Kvasir (Pogorelov et al., 2017) dataset. These results demonstrate that different
errors are made, motivating a combined approach (c). The combined approach
is the average of the predicted softmax outputs of both models.

Table 1 presents the TCL results on the entire CheXpert dataset for comparison to
ResNet-50 (Raghu et al., 2019). We note that TCL outperforms training from scratch
(ResNet-50) on this large dataset in all five disease categories, with significant improvements
in three out of the five classes, motivating the use of TCL even in large data regimes.

3.2. Feature Representation of TCL

Next, we ask the question are the features learned by TCL and TE2E different? Further,
which are more localised to the target area of interest? We begin by plotting the Grad-CAM
saliency maps to probe the feature maps.

We visualise the Grad-CAM saliency maps for TCL versus TE2E on the ChestX-ray8
dataset that contains radiologist bounding box labels (red box in Figure 4), demonstrating
the TCL features found at the intermediate layers to be more closely aligned. Our large
scale quantitative experiments, described in more detail later in this section, demonstrate
the repeated superior localisation accuracy of TCL in comparison to all other methods.
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Table 1: Performance of TCL in comparison to E2E trained source models on the CheXpert
dataset. Note, the E2E results (TResNet-50 and ResNet-50 are taken from the
literature (Raghu et al., 2019)). Results are reported in AUC-ROC. (*) indicates
a statistically significant difference via two-sided pair sample t-test (p ≤ 0.05).

Disease TCL TResNet-50 ResNet-50

Atelectasis 79.80±0.93 79.76±0.47 79.52±0.31

Cardiomegaly 78.68±0.93 (∗) 74.93±1.41 75.23±0.35

Consolidation 90.16±0.68 (∗) 84.42±0.65 85.49±1.32

Edema 89.87±0.11 88.89±1.66 88.34±1.17

Pleural Effusion 91.33±0.13 (∗) 88.07±1.23 88.70±0.13

Further, we visualise the Grad-CAM saliency maps over several layers and across all of the
methods in Figures S2 and S3, demonstrating more consistent localised features with TCL.
Pleural Effusion is a disease type with excess liquid build up at the pleura region (Hooper
et al., 2010). We observe in Figure S2 that the CL-trained network achieves improved
localisation at nearly every layer as observed by the red patches near the bottom of the
lungs, while the E2E network achieves the correct location merely at last convolutional
layer.

Figure 4(b), 4(e), 4(h) and 4(k) shows that saliency map generated via TCL is hav-
ing coarse feature and accurately localised to target ROI. A reasonable question to ask is
whether this observation is hold for every images, as oppose to cherry-picking the result
that have best the visualisation.

Granulometry analysis (Dougherty et al., 1989) on the generated saliency maps quan-
titatively demonstrate the coarse-to-fine feature representation of TCL versus TE2E. The
higher granulometry represents the feature activation (indicated as the irregular red patch
in Figure 4). The results in Figure 5 demonstrate that TCL generates saliency maps that
have higher granulometry, indicating the feature activations are coarser, at early layers and
finer at later layers. TE2E has very evenly distributed granulometry across the layers.
These results further strengthen the argument for CL in transfer as we demonstrate that
early layers in the network are learning coarser features while later layers are learning more
fine grained features.

We are interested to know if features learned by TCL are able to accurately identify
target regions of interest consistent with human expert labels. In order to address this
question, we quantitatively compare our saliency map results with pixel-level annotations
done by medical experts available only in the Chest-Xray8 dataset. We measure the In-
tercept Over Union (IOU) between our saliency maps and the region within the bounding
box labels. We assume IOU > 0.1 to be correctly localised, then measure the localisation
accuracy (i.e. number of images that are correctly localised) over 983 instances. Figure 6
shows the overall localisation accuracy comparisons over the five learning methods over the
intermediate layers. There is a large improvement in localisation accuracy with TCL over
the other learning methods, with TCL constantly obtaining higher localisation accuracy
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(a) Atelectasis (b) IOU = 0.334 (c) IOU = 0.068

(d) Atelectasis (e) IOU = 0.440 (f ) IOU = 0.402

(g) Effusion (h) IOU = 0.185 (i) IOU = 0.259

(j ) Infiltrate (k) IOU = 0.315 (l) IOU = 0.399

Figure 4: Grad-CAM generated via TCL intermediate layer in comparison to the same layer
from TE2E. Red rectangle denotes ground truth bounding box annotated by the
clinician. The TCL features learned are localised to the target region of interest.
Left column: Original image and its finding label; Middle: TCL; Right: TE2E.
Both TCL and TE2E have same architecture, feature maps are taken at third
layer.
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(a) Dataset = IDC (b) Dataset = Kvasir

(c) Dataset = HAM10000 (d) Dataset = BIMCV

Figure 5: Granulometry measure comparing TCL and TE2E learning methods on different
layers. Result demonstrating on four distinct medical problems.

over all layers of the network, greatly outperforming TE2E. This result is significant for
interpretability, demonstrating that TCL is more often making predictions using the same
regions of the images that medical experts identify.

3.3. Noise Robustness and Confidence Calibration

In Figure 7(a), we seek to answer the question is TCL more robust to noise? by adding
additive white Gaussian noise to the target domain. We demonstrate that a small amount
of noise results in TE2E performance dropping severely, although this level of noise is not
visually perceivable.

In confidence calibration analysis, we use the ECE to quantify which learning method
yields better calibration. Note, ECE is an error measure and therefore lower values are
desired. In the clinical setting, lower ECE could indicate the model which produces a
confidence score that is less likely to be overconfident (e.g. false positive prediction with
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(a) Localisation Accuracy (b) IOU

Figure 6: TCL consistently results in better localisation, meaning the features learned are
more closely aligned with the labelled regions of interest. a) The localisation
accuracy, measured as the IOU between the saliency maps and bounding boxes,
over varied learning method layers. The error bar on average IOU across different
trials did not appear due to small variation. However, there is large variation in
IOU across images. b) Scattering plot of IOU between the manual annotation and
saliency maps. Results demonstrated using 983 chest X-ray images with manual
annotation from the Chest-Xray8 dataset. Orange dots represent example images
used in Figure 4.

a confidence probability 0.99). In such case, a well-calibrated model should return a lower
confidence value to indicate that their aware they are likely making incorrect predictions so
that the clinician can take over the decision-making process. Figure 7(b) shows that TCL
tends to have lower ECE than E2E and TE2E learning method, implying the predictions
are more representative of the true likelihoods of the labels.

4. Conclusions

In this paper, we demonstrate for the first time the superior feature representations learned
using CL, considering five medical imaging classification tasks and one localisation task. We
show that a layer-wise learning strategy has many advantages in comparison to traditional
learning, particularly as the way the feature representation learning is achieved varies. This
difference not only offers improved transfer performance, it also offers many other potential
advantages. By exploring the types of errors made and the types of features learned, we
discover that TCL offers improvements in terms of the localisation of features, robustness
to noise, as well as improved calibration further supporting the hypothesis that learning
in a layer wise fashion is a superior strategy for medical image classification. Overall, we
demonstrate empirically that TCL is a superior learning method for deployment into real
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(a) Performance over adding white Gaus-
sian noise with changing variance (x-
axis).

(b) Model calibration errors, measured us-
ing ECE.

Figure 7: The results demonstrate that TCL tend to be robust to noise and better cali-
bration in comparison to E2E and TE2E. The experiments are conducted on the
HAM10000 dataset.

clinical environments in terms of classification performance, tractable activations, noise
robustness and confidence calibration.
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Appendix A.

Performance Comparison with Self-supervised Features in Transfer

We compare our method against two self-supervised methods including the current state-
of-the-art (Truong et al., 2021). We conduct experiment on NIH Chest X-ray dataset (Ma-
jkowska et al., 2020), which released two subsets of chest X-ray images. For each subset have
2414 and 1962 chest X-ray images, respectively. There are four medical conditions anno-
tated by radiologist (pneumothorax, nodule or mass, opacity, and fracture). We include the
class Normal indicating no medical conditions with respect to the four class labels (Truong
et al., 2021). Table S1 shows a comparison between TCL and self-supervised methods DINO
and SimCLR. The result are averaged over 3 runs with 5 fold cross validation for each run.

Table S1: The mean AUC is obtained across 5 folds and 3 training set partitions. Note,
the results for DINO and SimCLR are taken from the literature (Truong et al.,
2021).

Training Size TCL DINO SimCLR

Without Fine Tune

50 0.6614±0.0018 0.6831±0.0233 0.6273±0.0130
200 0.7134±0.0065 0.7373±0.0112 0.6645±0.00067
2414 0.7589±0.0018 0.7438±0.0228 0.6983±0.0231

With Fine Tune

50 0.6529±0.006 0.6348±0.0286 0.6227±0.0309
200 0.684±0.0024 0.6652±0.0114 0.7228±0.0287
2414 0.7643±0.0054 0.7404±0.0240 0.7358±0.0295

Additional Explanation of Granulometry

An important observation we make about cascade learning is that features extracted during
layer-wise training tend to be coarse in early layers. This is because when training one
layer at a time, the network is constrained to have limited flexibility. As we go to deeper
and deeper layers, finer details specific to the domain in which the network is trained are
extracted. Granulometry Dougherty et al. (1989) is an image processing technique that can
help quantify this effect and has been used in applications such as foreground-background
segmentation of blood cell images (Di Ruberto et al., 2000). In Figure S1, we give a simple
illustration to how coarse and fine distribution of features in the space of GradCam maps
differ in this measure.
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(a) Example image (coarser) (b) Example image (finer)

(c) Pixel survived against disk size

Figure S1: Granulometry measure on two synthetic images. The two black-and-white syn-
thetic images have the same proportion of white space. One has large continuous
regions (coarse distribution) and in the other features are distributed as finer
lumps. Granulometry is computed by moving around the space disks of vary-
ing sizes (defined by parameter n) until they touch black pixels. The surviving
pixel is defined by number of positive pixels (white color blobs in the image) are
remain positive after the morphological opening operation. The coarser image
has large continuous region therefore the large size disk will not touch the black
pixels if move the disk within the region.
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Implementation Details

The Simple CNN structure used in the experiments labelled Conv can be found in Table S2.

Table S2: Simple CNN architecture used in the experiment.

layer name output size 11-layer

Feature

conv1 f 114 x 114 [3x3, 256] x 1
conv2 f 59 x 59 [3x3, 256] x 1
conv3 f 31 x 31 [3x3, 256] x 1
conv4 f 17 x 17 [3x3, 256] x 1
conv5 f 10 x 10 [3x3, 256] x 1
conv6 f 7 x 7 [3x3, 256] x 1
conv7 f 5 x 5 [3x3, 256] x 1
conv8 f x 4 x 4 [3x3, 128] x 4

Classifier

conv1 c 4 x 4 [3x3, 128] x 1
flatten 1 x 1 N/A
fc 1 N/A 256
fc 2 N/A 256
fc 3 C 256

All the networks are trained with standard data augmentation which includes random
cropping and flipping, random rotations and image normalization. For hyper-parameter
tuning in Figure 2, we search for optimal learning rate using and batch size using the
following setting: Initial learning rate sampled from 10−5 to 10−1 on log space; mini-batch
size sample from (8, 16, 32, 64). We use Adam as optimization algorithm. We select the
best performing model between TCL and TE2E on the validation set. We use this best
performing model to make inference on the test data. For the combined approach, we
average their combined softmax prediction on the test data and report this result. We
use the hyper-parameter tuning library Ray tune (Liaw et al., 2018) for systematic hyper-
parameter tuning. All experiment are running on a single machine with 4 RTX 2080 GPU
and use Pytorch (Paszke et al., 2019) machine learning framework.
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More results on GradCAM analysis

Figure S2 shows GradCAM visualisation on both CL and E2E training on target domain
data (chest X-ray) over various intermediate layer.

Figure S2: Grad-CAM saliency map at different layers. Top: Results on a cascade trained
network. Bottom: Results on E2E training. In comparison to E2E training, CL
achieves better localisation of the target for every layers. Result demonstrated
using CheXpert dataset.
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Figure S3 shows GradCAM visualisation on five learning method over three medical
datasets with different modality.

Figure S3: Grad-CAM visualisations for all five learning methods at last convolutional lay-
ers across three distinct medical problems. From left to right, subfigures on
first column show original images randomly sampled from IDC, Kvasir and
HAM10000 validation set. Second to last column are their Grad-CAM visu-
alisations. The visualisations compare all five learning methods, demonstrating
visually that TCL is able to generate a localised target lesion location.
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