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Abstract

This paper introduces a novel non-parametric deep model for estimating time-to-event (sur-
vival analysis) in presence of censored data and competing risks. The model is designed
based on the sequence-to-sequence (Seq2Seq) architecture, therefore we name it Survival
Seq2Seq. The first recurrent neural network (RNN) layer of the encoder of our model is
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made up of Gated Recurrent Unit with Decay (GRU-D) cells. These cells have the ability
to effectively impute not-missing-at-random values of longitudinal datasets with very high
missing rates, such as electronic health records (EHRs). The decoder of Survival Seq2Seq
generates a probability distribution function (PDF) for each competing risk without as-
suming any prior distribution for the risks. Taking advantage of RNN cells, the decoder
is able to generate smooth and virtually spike-free PDFs. This is beyond the capability
of existing non-parametric deep models for survival analysis. Training results on synthetic
and medical datasets prove that Survival Seq2Seq surpasses other existing deep survival
models in terms of the accuracy of predictions and the quality of generated PDFs.

1. Introduction

The objective of survival analysis is to estimate the hitting time of one or more events
in the presence of censored data Cox and Oakes (2018). In healthcare, such events can
include time of death, inception of a disease, time of organ failure Dekker et al. (2008), etc.
The ability to predict the time or probability of certain events happening to a patient is a
valuable asset for medical professionals and clinical decision makers, as it enables them to
manage clinical resources more efficiently, make better informed decisions on the treatment
they offer to patients, find the best organ donor-recipient matches, etc. Electronic health
records (EHRs) often have characteristics that pose several challenges to the development
of reliable survival models. Some EHRs are longitudinal, i.e., multiple observations per
covariate per patient over time are recorded Barak-Corren et al. (2017). The survival
model must be able to process such measurements and learn from their sequential temporal
trends. Medical records, especially longitudinal observations, tend to be highly sparse.
Therefore, any reliable survival model must effectively handle missing values, even if the
missing rate is extremely high Wells et al. (2013); Nazabal et al. (2020). Dealing with
right censored data is another complication of survival analysis models Khan and Zubek
(2008). The right censored data happens often when medical centers lose track of a patient
after a certain time, called the censoring time. Survival models must take into account
censored data during the training phase. In addition, the presence of competing risk events
is another challenge that survival models need to deal with. Having a long-tail distribution
is another characteristic of many medical datasets Rahman and Davis (2013). In such
skewed datasets, samples with shorter event times form the bulk of the distribution, while
samples with longer event times make only a small portion of the dataset. Following the
distribution of such skewed datasets is another challenge for survival and regression models.
In fact, many existing survival models cannot accurately predict PDFs with a long time
span from medical datasets.

The major challenge of developing survival analysis models is, however, the non-existence
of the ground truth for the probability distribution of risk events Clark et al. (2003); Bewick
et al. (2004). Medical records contain the time and type of events that happened to patients.
However, the underlying distribution of time-to-event is unknown. This makes developing
statistical models or supervised training of machine learning models for survival analysis
difficult. Survival models can be divided into two main categories: parametric and non-
parametric. Parametric survival models assume a certain stochastic distribution for the
dataset, while trying to estimate the parameters of the assumed distribution. On the other
hand, non-parametric survival models do not assume any prior distribution for the events.
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Instead, they try to estimate distributions purely based on the observed relationship between
the covariates and the time of events in the dataset.

To address the aforementioned challenges of developing survival analysis models and to
alleviate the shortcomings of the existing survival models, we propose Survival sequence-to-
sequence (Seq2Seq). Survival Seq2Seq is a non-parametric multi-event deep model, capable
of processing longitudinal measurements with very high missing rates. The accuracy of our
model in predicting event times as well as the quality of its generated probability distribution
functions (PDFs) exceeds that of existing survival models. In addition, Survival Seq2Seq
performs superbly on skewed datasets. The superiority of our model is backed by the results
obtained by training Survival Seq2Seq on synthetic and medical datasets. These results will
be provided in the later sections of this paper.

Our proposed Survival Seq2Seq model has the following key features:

e The first layer of the recurrent neural network (RNN)-based encoder network of Sur-
vival Seq2Seq is made of Gated Recurrent Units with Decay (GRU-D) Che et al.
(2018) cells. GRU-D cells offer superior performance in imputing not-missing-at-
random values. Taking advantage of GRU-D, Survival Seq2Seq can effectively handle
high missing rates that commonly occur among medical datasets.

e The decoder network of our model is a recurrent network, which can generate sub-
stantially smoother PDFs compared to other non-parametric survival models. Since
Survival Seq2Seq has fewer trainable parameters compared to a decoder made of dense
layers, it suffers less from overfitting compared to other non-parametric models that
use Multi-Layer Perceptron (MLP) in their decoders.

e We have enhanced the typical loss function used for training non-parametric survival
models by improving the ranking loss term of our model. The improved ranking loss
will help the model to better rank samples with longer event times.

e Our proposed model can be effectively trained on datasets with a long-tailed dis-
tribution, which is a common characteristic of healthcare datasets. This means that
Survival Seq2Seq can accurately predict longer event times as well as the shorter ones.

Generalizable Insights about Deep Survival Models in the Context of
Healthcare

The goal of survival analysis is to provide a hazard or reversely a survival function about
a medical event for a patient, given some clinical observations. The hazard function or
equivalently the hazard rate shows the probability of the occurrence of a medical event
such as death or organ failure over time. While survival analysis has a long history in
healthcare and non-healthcare applications using Cox-based proportional hazard (CPH)
models, recent publications in the literature show the superior performance of deep learning
models for predicting hazard functions. This means that the occurrence rate of medical
events can be predicted more accurately over time. Consequently, healthcare providers can
take preemptive actions more accurately and adequately.

As an example, the time of death of potential donors can be predicted via a hazard
function, which allows procurement teams to make a timely attempt. Moreover, a deployed
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tool based on an accurate hazard function can improve matchmaking and the outcome of
transplants, leading to shorter wait lists and waiting times, improved longevity of the or-
gans after transplantation, less need for re-transplantation, and longer survival of recipients
with a higher quality of life. Currently, medical decision-making tools based on statistics
studies of different cohorts and not fully supported by solid emerging evidence. For ex-
ample, predicting mortality in ICU patients is of great value for assessing the severity of
illness, adjusting the treatments to improve the patients’ chance of survival, adjudicating
the impact of novel interventions, and resource management policies of healthcare systems
Pirracchio et al. (2015); Yun et al. (2021). As our results show, our novel survival model
significantly improves the accuracy and quality of mortality prediction for ICU patients.
This enhancement in mortality prediction can improve the quality of decision making in all
healthcare operations that rely on mortality prediction. In addition to promising results,
once our model is deployed, the model can adapt to new patient data as it accumulates.

The rest of this paper is organized as follows: A short discussion of related works and
their limitation is provided in section 2. The architecture of Survival Seq2Seq is described
in Section 3. Section 4 represents the datasets used for training the model, while the
experimental results of the training are provided in Section 5. Finally, section 6 concludes
the paper.

2. Related Work

Classical parametric models rely on strong assumptions about the time-to-event distribu-
tion. Such strong assumptions allow these models to estimate the underlying stochastic
process based on the observed relationship between covariates and time-to-event. However,
the predicted probability distribution of these models is over-simplified and often unreal-
istic. CPH is an example of a parametric statistical model that simplifies the underlying
distribution by assuming that the proportional hazard increases constantly over time. The
model estimates the hazard function, A(¢|x), the probability that an individual will experi-
ence an event within the time ¢, given all x features (covariates). Although several works
such as Vinzamuri et al. (2014); Vinzamuri and Reddy (2013); Li et al. (2016) have tried
to address the shortcomings of the CPH model to some degree, the over-simplification of
the underlying stochastic process limits the flexibility, generalizability, and the prediction
power of the CPH model. Besides, the CPH model cannot process longitudinal measure-
ments. Deep Survival Machines (DSM) Nagpal et al. (2021a) is an example of a machine
learning-based parametric model that assumes a combination of multiple Weibull and Log-
Normal primitive distributions for the survival function. A deep MLP model is trained to
estimate the parameters of those distributions and a scaling factor to determine the weight
of each distribution in the overall estimated hazard PDF. Training DSM is rather difficult,
as the optimizer is easily diverged when trying to minimize its loss function and the model
becomes overfit. Despite delivering a high Concordance Index (CI) score, the model per-
forms poorly when estimating the hitting time of events. The CI score is a metric used for
evaluating the ranking performance of survival models. The model is also unable to process
longitudinal measurements.
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The random survival forests (RSFs) method Ishwaran et al. (2008) is an extension of
random forests that supports the analysis of right-censored data. The training procedure of
RSF's is similar to other random forests. However, the branching rule is modified to account
for right-censored data by measuring the survival difference between the samples on either
side of the split, i.e., survival times. RSFs have become popular as a non-parametric
alternative to CPH due to their less restrictive model assumptions. However, similar to
CPH, RSFs cannot be trained on longitudinal datasets.

In Katzman et al. (2018), a non-parametric variation of CPH called DeepSurv is pro-
posed as a treatment recommendation system. DeepSurv uses an MLP network for charac-
terizing the effects of a patient’s covariates on their hazard rate. This solves the parametric
assumptions of the hazard function in the original CPH model. It also leads to more flexi-
bility of DeepSurv compared to CPH. As a result, DeepSurv outperforms other CPH-based
models and it can learn complex relationships between an individual’s covariates and the
effect of a treatment. DeepCox Nagpal et al. (2021b) proposes Deep Cox Mixtures (DCMs)
for survival analysis, which generalizes the proportional hazards assumption via a mixture
model, by assuming that there are latent groups and within each, the proportional hazards
assumption holds. DCM allows the hazard ratio in each latent group, as well as the la-
tent group membership, to be flexibly modeled by a deep neural network. However, both
DeepSurv and DeepCox models still suffer from the same strong assumption of propor-
tional hazards as the original CPH formulation. Also, neither of those two models supports
longitudinal measurements.

As an alternative to assuming a specific form for the underlying stochastic process, Lee
et al. (2018) proposes a non-parametric deep model called DeepHit, to model the survival
functions for the competing risk events. Since no assumptions are made on the survival
distribution, the relationship between covariates and the event(s) can now change over
time. This is considered an advantage of DeepHit over CPH-based models. The first part
of the DeepHit model, i.e., the encoder, is made of a joint MLP block. The decoder of the
model is made of MLP blocks, each specific to one event. The output of each case-specific
block is a discrete hazard PDF for each event. The last layer of each case-specific block
contains N units, where each unit generates the likelihood for one timestep (e.g. one hour
or one month) of the hazard PDF over the prediction horizon. A major drawback of this
method for generating probability distributions is that the predictions of the output layer
could arbitrarily vary from one unit to the next. This causes the overall generated PDFs
to be extremely noisy. Moreover, depending on the number of time steps in the prediction
horizon, the number of trainable parameters in the output layer could become too high and
may cause overfitting when training the model.

Dynamic-DeepHit (DDH) Lee et al. (2019) is an extension of DeepHit, capable of pro-
cessing longitudinal measurements. In this model, the encoder is replaced with RNN layers
followed by an attention mechanism. The RNN block can learn the underlying relationship
between longitudinal measurements and provide finer predictions compared to the MLP
block in DeepHit. The case-specific blocks of DeepHit and DDH are the same, which means
that DDH suffers from predicting noisy PDF's and overfitting. Recurrent networks are also
utilized in Ren et al. (2019) to generate probability distributions of events. In contrast to
non-parametric deep models like Lee et al. (2018) or Lee et al. (2019) that use MLP-based
decoders, the authors in Ren et al. (2019) have utilized an RNN-based decoder to estimate
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probability distributions of events. They have achieved higher CI scores compared to Lee
et al. (2018), which can be contributed to the higher quality of RNN-generated probability
distributions and less overfitting issues. Although RNN based, their survival model is not
designed to process longitudinal measurements.

Recently, the application of the transformer architecture in survival analysis has been
studied in some research such as Wang and Sun (2021) and Hu et al. (2021). In addition,
studies like Engelhard et al. (2020) suggest distinguishing between the probability distri-
bution of events and their hitting times due to the lack of ground truth for the probability
distribution of events. Kamran and Wiens (2021) focuses on improving the calibration
capability of survival models, while maintaining the discriminative power of these models.
They argue that the calibration power of survival models is even more important than their
ranking power. It is worth mentioning that none of the aforementioned studies considers
longitudinal measurements in the modeling structure.

3. Methods: Survival Seq2Seq

A successful non-parametric survival model must accept longitudinal EHRSs as the input, and
must output hazard PDFs for competing risks, while using survival times as the ground truth
for training. We realized that the Seq2Seq architecture had a strong potential for performing
such a survival analysis. This architecture is commonly used for natural language processing
(NLP) and time series decoding tasks Rezaei et al. (2022). For example, it can translate
one language to another. A typical Seq2Seq model is made up of an RNN-based encoder
network and another RNN-based network as the decoder. In case of language translation,
the encoder encodes a sentence of the source language and sends the encoded sequence to
the decoder. The decoder then generates the sentence of the destination language word by
word based on the previously generated words in the destination sentence as well as the
encoded sequence. Also, adding an attentional mechanism to a Seq2Seq model improves
the performance of the model when translating longer sentences.

The Seq2Seq architecture can be adapted to perform survival analysis. In a nutshell, the
encoder of a Seq2Seq model can process longitudinal EHR and send the encoded sequence
to the decoder, while the decoder generates a discrete hazard PDF of an event based on the
encoded sequence. Despite showing a strong potential, the original Seq2Seq architecture
needs to undergo several modifications to be ready for performing survival analysis. The
model needs a missing value handling mechanism to effectively impute the sheer number
of missing values in longitudinal medical datasets. The decoder of Seq2Seq can generate a
PDF for each competing risk. In addition, a proper loss function is required to train such a
non-parametric model. While considering censored data, such a loss function must be able
to shape the generated PDFs based on the observed relationship between measurements
and event times.

Figure 1 shows the overall structure of Survival Seq2Seq, a survival model based on the
Seq2Seq architecture. The model follows the basic Seq2Seq architecture with an encoder
for processing longitudinal measurements and a decoder for generating hazard PDFs for
multiple events. The first RNN layer of the encoder is made up of GRU-D cells. These cells
are highly effective in imputing missing values of medical datasets. The decoder network is
composed of several RNN-based decoder blocks, where each block is responsible for gener-
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Figure 1: The overall architecture of Survival Seq2Seq

ating the PDF for one event in the dataset. We have added an attentional mechanism to
Survival Seq2Seq to improve its overall performance. To train Survival Seq2Seq, we use a
multi-term loss function composed of the log-likelihood loss Lee and Whitmore (2006) plus
an improved ranking loss term that enhances the ranking performance of the model. Design
of Survival Seq2Seq is discussed in greater detail in the rest of this section.

3.1. Encoder

The encoder network is responsible for processing longitudinal measurements of patients and
passing the encoded sequence to the decoder network. As mentioned earlier, longitudinal
EHRs are very sparse. To handle the missing values of longitudinal measurements, we use
GRU-D cells in the first layer of the encoder network. The patterns of missing values and
their relationship with labels in medical datasets provide valuable information for supervised
learning tasks Che et al. (2018). A GRU-D cell learns the relationship between labels and the
missing pattern of covariates during a supervised learning process and utilizes the observed
relationship to impute missing longitudinal measurements for continuous covariates. GRU-
D imputes missing values of a covariate by applying a decay rate to the last measured value
of that covariate. The influence of the last covariate measurement is reduced proportionally
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over time if the covariate has not been measured. If a covariate is not measured for a
long period of time, GRU-D imputes that missing value by relying more on the mean value
of that covariate rather than its last measurement. The imputation process in GRU-D
needs three input vectors: a vector containing longitudinal measurements, a mask vector
which indicates if a measurement is available or missing (value one represents a covariate
is measured and value zero represents the covariate is missing) and a Delta vector which
represents the time difference between the current timestamp and the last timestamp at
which a covariate for a patient was measured. Readers can refer to Che et al. (2018) for the
implementation details of GRU-D cells. The encoder network of Survival Seq2Seq can be
stacked with multiple RNN layers if desired. In that case, the stacked layers can be made
up of some other recurrent cells such as Gated Recurrent Unit (GRU) or Long Short-Term
Memory (LSTM). A stacked encoder allows the model to learn more complex temporal
relationships in data, provided that the training set is large enough to support a deeper
network. If not, the encoder can also work with only one GRU-D layer.

3.2. Decoder

As depicted in Figure 1, the decoder network is made of K decoder blocks, each specific
to one event in the dataset. The censored event is not considered as an interested event,
therefore no decoder block is assigned for censored records. Decoder blocks can be made
of stacked RNN layers of vanilla RNN, LSTM or GRU. Similar to the encoder network,
a stacked decoder block can be used to learn more complex relationships in data. The
generated hazard PDFs are discrete, meaning that the prediction horizon is divided into
several timesteps (bins) and a decoder block predicts the value (likelihood) of each bin
sequentially. To generate the likelihood for a given timestep, the decoder relies on the
likelihood of the previous timestep as well as the encoded sequence. Therefore, the value
of the PDF for any timestep is dependent on the previous timesteps and cannot arbitrarily
change. As a result, the generated PDFs are smooth and ripple-free.

The output of each decoder block is concatenated with the attention vector and then
passed through a time distributed dense layer with a relu activation function. The at-
tentional mechanism improves the performance of the model in dealing with long encoded
sequences, i.e, data samples with too many measurements. The output tensor of all decoder
blocks is reshaped to a one-dimensional tensor, where a softmaz activation is applied on the
resulted tensor. The softmax activation guarantees that the joint cumulative distribution
function (CDF) of all events is always equal to one. The output of the softmaz layer is
then reshaped to its original dimensions. This provides the estimated hazard PDFs for all
events as follows:

P11 P12 - D1y
P21 P22 - D2y

PDF=|"" T ol (1)
Pr1 PK2 ' PKT,

where each row represents the predicted hazard PDF for an event, while T}, is the number
of timesteps (length of decoder) for the estimated PDFs. Using Equation 1, the estimated
hazard CDF for event £* at timestep 7 for a set of covariates x is given by
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CDFy- (rla) = Zpk* A 2)

Depending on the use case, either of the PDF formulated in Equation 1 or the CDF in
Equation 2 can be considered as the output of the model. Also, if the hitting time of an
event is desired, the expected value of the PDF can be considered as the predicted time of
the event.

3.3. Loss function

The loss function used for training Survival Seq2Seq is L = L; + L, in which L; and L, are
log-likelihood Lee and Whitmore (2006) and ranking terms, respectively. The log-likelihood
term is defined as follows:

— Z log(pit Tt Z log(1 — ZCDFk T¢|xj)), (3)

J€Uue jeU.

in which U, and U, are the sets of uncensored and censored patients, respectively. The
index k; is the ground truth for the first hitting event, while 7, is the time of the event
or censoring. The log-likelihood loss is the main loss term for training Survival Seq2Seq.
The ground-truth for the probability distribution of events is unknown to us. The log-
likelihood loss allows a non-parametric model such as Survival Seq2Seq to be trained for
predicting probability distributions, while using the first hitting event time as the ground
truth. The first term of this loss is used for training the model on the first hitting event and
its corresponding time for uncensored patients, while the second term is used for training
the model on censored data. The first term of L; is designed to maximize the estimated
hazard PDF for event k; at 74, while minimizing it for other timesteps.

L, is a ranking loss and improves the ranking capability of the model. The idea behind
the ranking loss is that if an event happens for a given patient at a given time, the estimated
CDF for that patient at the time of the event must be higher than patients who have not
experienced the event yet. Therefore, this loss term increases the overall CI score of the
model. According to Jing et al. (2019) the ranking loss can be defined as:

Ly =— U1 S ®(CDF(r,|2:) — CDFy(m,|x7)), (4)
1,7)€U,

where 7, is time of event for patient ¢ and ®(.) is a differentiable convex function where
we use the exponential function ®(z) = exp(z). The U, term is a set of acceptable patient
pairs. In an acceptable pair, the first element must be uncensored, and the event for the first
element must occur before the event or censoring time of the second element. Even though
this loss function improves the ranking power of survival models, studies like Tjandra et al.
(2021) suggest that the ranking power of this loss can be further improved. To improve the
discriminative power of the ranking loss, we modify Equation 4 and propose the following:

L, = ‘Z > ®(CDFy(ry;|z:) — CDFy(m, ;). (5)

(1,J)€Uq
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The difference between Equation 5 and Equation 4 is that the updated ranking loss com-
pares two elements of a given pair at every timestep over the prediction horizon, while the
loss in Equation 4 only compares the pair at the time of the event. Our experimental results
provided in the upcoming sections suggest that the updated ranking loss improves the rank-
ing capability of the model, especially for events with longer hitting times. A longer hitting
time means more time steps at which the modified ranking loss evaluates an acceptable
pair. This translates to a better ranking performance on events with longer hitting times.

4. Cohort

The datasets used for training the model are described in the following:
SYNTHETIC: To evaluate the performance of Survival Seq2Seq, we created a syn-
thetic dataset based on a statistical process. Here, we consider = (29, ..., K ) as a tuple of

K random variables in a way that each random variable has an isotropic Weibull distribution

NG
Fl@y,pa) =2 (— )0 Vexp (—((x — p)/a)’) &> py,a>0,
where v is the shape parameter, u is the location parameter and « is the scale parameter.
We model the distribution of two event times, Tl-(l) and Ti@), for each data sample ¢ as a
nonlinear combination of these K random variables at time index ¢ defined by

TV = f(a” x (@) + BT x (a})), (6)

()

T? = f(a” x (x")° + 8T x (2)). ki ks € {1,.., K} (7)

7

where k1 and ks are two randomly-selected subsets of K covariates that satisfy ky N ko =
I, k1 Uk = K. By selecting the Weibull distribution in our synthetic data generator, the
event times will be exponentially distributed with an average that depends on a linear (with
parameters set 3) and quadratic (with parameters set &) combination of the random vari-
ables. This means long-tailed distributions for the event times similar to medical datasets,
as shown in Figure 2. The figure shows that the number of samples in the histogram are
not monotonically decreasing over the time. Instead, the number of samples for each event
peaks at some time and then decreases with a long tail. We chose this deliberately to eval-
uate the performance of the model on a dataset with a complex time-to-event distribution.
For each data sample, we have (x;,d;,T;), where §; = min{ﬂ(l),ﬂ(Q)} identifies the type
of the event happening at T;, i.e., the event time. In sum, we considered K = 20 and
generated 20000 data samples from the defined stochastic process with 20% censoring rate,
and a not-missing-at-random rate of 77% and a maximum event time of 200. To simulate
longitudinal measurements, we assume that the covariates for each sample are measured a
random number of times, while the measured values at each time stamp are increased or
decreased nonlinearly with a random rate specific to each sample-covariate pair.
MIMIC-IV: The MIMIC-IV dataset Johnson et al. (2020) contains hospital clinical
records for patients admitted to a tertiary academic medical centre in Boston, MA, USA.,
between 2008-2019. This database contains demographics data, laboratory measurements,
medications administered, vital signs and diagnosis of more than 71000 ICU patients. We

10
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Figure 2: The histogram of survival times in the synthetic dataset. The histogram shows
that the generated dataset is long-tailed similar to medical datasets.

considered a 33-day prediction horizon with a 4-hour time resolution for the decoder of Sur-
vival Seq2Seq. Therefore, patients with an event time longer than 33 days were considered
censored. We also selected 108 covariates from this dataset based on the feedback of our
medical team as well as by applying feature selection methods to the dataset.

5. Results

The performance of Survival Seq2Seq was evaluated by training the model on SYNTHETIC
and MIMIC-IV datasets. Results were compared to DDH for benchmarking, as DDH was
the only survival model known to us, capable of processing longitudinal measurements for
survival analysis.

5.1. Evaluation Approach/Study Design

Mean absolute error (MAE) is the main metric we use for evaluating the performance of the
models. MAE is defined as the mean of the absolute difference between the predicted time
of an event and the observed time for that event for uncensored data samples. We consider
the expected value of a predicted PDF as the predicted event time. The other metric used
in this paper is the time-dependent CI score Antolini et al. (2005) defined as follows:

CI(t) = P(E(t|z;) > F(t|z;)|6; = 1,T; < T, Ti < t),

where F(t|z;) is the estimated CDF of the event, truncated at time ¢, given a set of covariates
x;. This metric evaluates the performance of the models when predicting the order of events
for data samples. The CI measure can evaluate the performance on both censored and
uncensored samples in the test dataset. The time dependency of this metric allows us to
evaluate the performance of models when capturing the possible changes in risk over time.

The results will be reported in four 25%, 50%, 75% and 100% quantiles with 5-fold
cross-validation. We consider one GRU-D layer for the encoder and one GRU layer for each
decoder block of the decoder network. For the Synthetic dataset, the encoder contains 100
GRU-D cells, while each decoder block (there are two decoder blocks, each for one event)
is made of 100 GRU cells. To train the model on MIMIC-IV, we consider one GRU-D

11
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layer for the encoder and a GRU layer for decoder, each containing 120 cells. We also
applied 40% recurrent dropout rate to the RNN layers for training on both datasets. The
optimal number of cells and dropout rate were obtained using grid search hyperparameter
optimization. 50 epochs are considered for training the model on each fold with an early
stopping condition in place.

In addition, we consider the length of the decoder of Survival Seq2Seq 25% longer than
the maximum event time of each dataset. This is necessary for dealing with censored
samples at the maximum event time (200 for SYNTHETIC and 33 days for MIMIC-IV)
or a time close to the defined maximum event time. This extra decoder length allows the
model to shift a considerable portion of the PDF for those samples to later timesteps, so
that the predicted time of the event for censored data happens after the censoring time. The
extra length of the decoder is a hyperparameter of the model, where its optimal value can
be chosen based on the performance of the model on censored data; if the model performs
poorly on censored data, the length of the decoder should be increased until satisfactory
performance on censored data is achieved.

5.2. Evaluating Using the SYNTHETIC Dataset

Table 1 compares the performance of Survival Seq2Seq and DDH on the SYNTHETIC
dataset in terms of MAE. The mean and variance of the results of the five folds are used
for calculating the confidence interval of predictions. It can be seen that Survival Seq2Seq
significantly outperforms DDH for both events in all quantiles except the first quantile.
Figure 3 represents the difference between the ground truth and prediction for Survival
Seq2Seq and DDH for a few uncensored samples of the SYNTHETIC dataset. It can be
observed that Survival Seq2Seq can follow the distribution of the dataset by predicting
values close to the ground truth, whether the survival time is closer to zero or it is much
longer. On the other hand, DDH performs very poorly in predicting longer event times.
Prediction results provided in Table 1 as well as Figure 3 proves that Survival Seq2Seq can
effectively predict the event time on datasets with long-tailed distributions.

As Figure 3 reveals, DDH has a tendency to predict shorter event times for all events,
whether the ground truth is long or short. This translates to a lower MAE for shorter
event times for DDH compared to Survival Seq2Seq. This situation is somehow similar
to an imbalanced binary classification in which a naively-trained classification model leans
toward predicting in favor of the class with the higher share of training samples. The
overall accuracy of such a classification model could be very high, although the model
would perform very poorly on the minority class. Using the same analogy, a better way
to evaluate a model like DDH with skewed predictions is to look at its performance in the
last quantile, where events with longer hitting times can be found. This is where Survival
Seq2Seq outperforms DDH.

The slightly higher MAE of Survival Seq2Seq compared to DDH in the first quantile
can also be explained based on the imputation mechanism of GRU-D cells. The number
of measurements for data samples with very short event times are scarce. If the value of
a covariate for a given data sample is missing at the first measurement timestamp, GRU-
D has to rely solely on the mean of that covariate to impute that missing value. This is
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Quantiles
25% 50% 75% 100%
Survival Seq2Seq event 1 | 11.85+0.6 | 1247 £1.2 | 14.01 £1.4 | 1554 £ 1.8
event 2 | 12.26 £ 0.5 | 13.20 = 0.9 | 15.55 + 2.2 | 20.83 + 3.8
DDH event 1 | 8.79 £ 0.7 | 20.36 £ 1.8 | 29.93 £ 1.8 | 35.03 £ 1.8
event 2 | 10.32 £ 0.3 | 1845+ 1.4 | 33.96 £ 1.5 | 52.22 £ 1.2

Table 1: Comparison between the MAE of Survival Seq2Seq and DDH on the SYNTHETIC
dataset. Results are reported with 95% confidence interval.

o predicted times
175 . . = ground truth

TR ' 1ot
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Uncensored samples

(a) Survival Seq2Seq

Time of event
2 e e
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e & 38
— =
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(b) DDH

Figure 3: The difference between the ground truth (green squares) and predictions (blue
dots) of Survival Seq2Seq (top) and DDH (bottom) on a few uncensored samples
from the SYNTHETIC dataset. Red lines show the difference between predic-
tions and ground truth for samples. The shorter the red line, the more accurate
the prediction. The comparison shows that Survival Seq2Seq follows the distri-
bution of the event times more accurately than DDH. The difference between the
performance of the two models is more apparent for longer event times.

obviously not ideal and causes higher prediction errors for very early predictions. However,
the imputation performance of GRU-D improves as more measurements are accumulated.
Table 2 represents the time-dependent CI score for the two models on the SYNTHETIC
dataset. Despite providing marginally lower CI scores for the two events in the first quantile,
our model outperforms DDH in all other quantiles, with a significant 0.08 higher average
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Quantiles
25% 50% 75% 100%
Survival Seq2Seq event 1 | 0.83540.04 | 0.77440.06 | 0.827+0.02 | 0.844+0.02
event 2 | 0.8504+0.03 | 0.80440.04 | 0.808+0.03 | 0.835+0.03
DDH event 1 | 0.842+0.01 | 0.766£0.01 | 0.760%0.01 | 0.77640.01
event 2 | 0.8534+0.01 | 0.78740.01 | 0.744+0.01 | 0.743+0.01

Table 2: Comparison between the time-dependent CI score of Survival Seq2Seq and DDH
on the SYNTHETIC dataset. Results are reported with 95% confidence interval.

Quantiles
25% 50% 75% 100%
Survival Seq2Seq event 1 | 0.8354+0.04 | 0.77440.06 | 0.827+0.02 | 0.844+0.02
event 2 | 0.8504+0.03 | 0.80440.04 | 0.808+0.03 | 0.835+0.03
Survival Seq2Seq event 1 | 0.813+0.09 | 0.729+0.10 | 0.751£0.06 | 0.779+0.07
without ranking loss | event 2 | 0.832+0.07 | 0.755+0.09 | 0.731£0.06 | 0.769+0.06

Table 3: Comparison between the CI scores of Survival Seq2Seq with the ranking loss 5
(same as the CI score of Survival Seq2Seq in Table 2) and Survival Seq2Seq without
a ranking loss. The comparison suggests that the ranking loss has a strong effect
on the ranking capability of the model across all quantiles.

CI score compared to DDH on the last quantile. The higher CI score of Survival Seq2Seq
with respect to DDH can be contributed to the introduction of the new ranking loss in
Equation 5. As the results suggest, the new ranking loss improves the ranking performance
of Survival Seq2Seq compared to a model like DDH that employs a ranking loss similar to
Equation 4 for improving its ranking performance.

To further investigate the impact of the proposed ranking loss 5 on the ranking capability
of Survival Seq2Seq, we performed a study in which we turned this loss off and allowed the
model to be trained solely using the log-likelihood 3 loss function. Table 3 presents the CI
score of Survival Seq2Seq with and without the ranking loss. It is evident that turning the
ranking loss off considerably reduces the CI score of the model across all quantiles.

5.3. Evaluating Using the MIMIC-IV Dataset

The performance of Survival Seq2Seq on MIMIC-IV is provided in Table 4. This table
shows the MAE and CI scores for our model and compares them to the outcome of DDH.
One can observe a pattern similar to Table 1 when comparing the MAE of Survival Seq2Seq
and its counterpart. The MAE of our model is marginally higher than DDH in the first
quantile. However, Survival Seq2Seq beats DDH in all other quantiles, so that the mean
absolute error of our model is less than half of the MAE of DDH on 100% of the test data.
Besides, the performance of Survival Seq2Seq in terms of the CI score exceeds the outcome
of DDH for all quantiles. Again, the updated ranking loss in Equation 5 is a factor that
contributes to these high CI scores.
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Figure 4: The difference between the ground truth (green squares) and predictions (blue
dots) of Survival Seq2Seq (top) and DDH (bottom) on a few uncensored samples
from MIMIC-IV. Each red line indicates the difference between the prediction
and the actual time of death for a patient. The shorter the red line, the more
accurate the prediction.

Figure 4 plots the difference between the predicted time and actual time of death for a
few randomly-selected deceased patients of MIMIC. The red vertical lines show the difference
between the predicted time of death and ground truth. One can observe that the predictions
of Survival Seq2Seq on MIMIC-IV are not as accurate as its predictions on the Synthetic
dataset presented in Figure 3. This is not an unexpected phenomenon, as a real-world
medical dataset like MIMIC-1V is influenced by many complicated dynamics that a synthetic
dataset can never simulate. Figure 4 also shows that Survival Seq2Seq provides more precise
predictions compared to the other model. The difference between the two models is more
evident on patients with longer times of event.

The superior imputation performance of GRU-D cells compared to other imputation
techniques in classification problems has been studied and shown in Che et al. (2018) on
several longitudinal datasets including MIMIC. To study the imputation quality of GRU-D
cells in the context of survival analysis, we created a modified version of Survival Seq2Seq
that does not utilize GRU-D cells. Instead, we added a masking vector to the input of
the model that indicates if a measurement is available by taking one or it is missing by
taking zero. This masking technique is a common method for handling missing values
of longitudinal datasets. All the GRU-D cells in this modified model were replaced with
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Quantiles
25% 50% 75% 100%
Survival Seq2Seq MAE | 34.834+4.1 37.06+4.6 39.534+4.0 62.7443.2
CI | 0.876+£0.02 | 0.88240.02 | 0.88540.02 | 0.9064+0.02
DDH MAE | 32.88+8.4 40.234+2.4 61.17£2.8 | 125.9544.7
CI | 0.863+0.03 | 0.849+0.02 | 0.845+0.03 | 0.5284-0.04

Table 4: Comparison between the results of Survival Seq2Seq and DDH on MIMIC-IV.
Results are reported with 95% confidence interval.

Quantiles
25% 50% 5% 100%
Survival Seq2Seq 34.83+£4.1 | 37.064+4.6 | 39.53+£4.0 | 62.74+3.2
Survival Seq2Seq without GRU-D | 43.8245.7 | 47.284+5.1 | 49.71+4.8 | 65.574+4.0

Table 5: Comparison between the MAE of the original Survival Seq2Seq with GRU-D (same
as the MAE of Survival Seq2Seq reported in Table 4) and the survival Seq2Seq
with masking on MIMIC-IV. The comparison shows that the original model that
takes advantage of GRU-D cells has lower prediction error across all quantiles.

GRU cells. Table 5 compares the MAE of this version of Survival Seq2Seq without GRU-
D cells to the original Survival Seq2Seq on MIMIC-IV. The MAE for the original model
is considerably lower than the MAE for Survival Seq2Seq without GRU-D imputation in
all quantiles. Considering the fact that the only difference between the two models is
their imputation approach, one can argue that GRU-D indeed offers a superior imputation
performance compared to conventional methods of handling missing values in the context
of survival analysis.

The quality of generated PDF's is another important factor besides the prediction accu-
racy when comparing Survival Seq2Seq to other non-parametric models. The superiority of
our model becomes apparent from Figure 5, where the predicted PDFs of Survival Seq2Seq
and DDH are compared for five randomly selected uncensored patients of MIMIC-IV. As
described in earlier sections, the RNN-based decoder of our model can generate smooth and
ripple-free probability distributions. This is in contrast to DDH where using an MLP-based
decoder results in PDFs with high fluctuations, as shown in Figure 5.

6. Discussion

Each of the MAE and CI metrics used in this paper is useful for evaluating a different use
case of a survival model. MAE is useful for evaluating the outcome of a survival model
when predicting the time of events (calibration) is desired, while CI is a better choice when
the model is applied on ranking problems. However, we cannot train a model that provides
optimal MAE and CI at the same time. The log-likelihood loss has a higher influence on
the calibration capability of the model than the ranking loss. Therefore, to minimize MAE,
one must assign a higher weight to the log-likelihood loss than the ranking loss. On the
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Ground truth time for death DDH predicted time for death Survival Seq2Seq predicted time for death
"""" (a) (b)
Patient1 —— 320 144.96 351.88
Patient2 —— 416 253.12 428.48
Patient3 —— 260 130 312.52
Patient4 —— 364 184.92 377.24
Patient5 —— 128 269.96 170.64

Figure 5: (a) The PDF's generated by Survival Seq2Seq for five randomly selected uncen-
sored patients of MIMIC-IV and (b) The generated PDF's of DDH for the same
patients. The ground truth for death and the predicted time of death of the
two models for each patient is shown at the bottom of the figure. The compar-
ison shows that the quality of the predicted probability distribution of Survival
Seq2Seq is superior than DDH.

other hand, the ranking loss must be assigned a higher weight if the ranking capability of the
model and a higher CI score is desired. Since we believe that calibration is a more important
task than ranking, we assigned a higher weight to the log-likelihood loss to minimize MAE.
We did the same for DDH to make the comparison between the two models fair. Assigning a
higher weight to the ranking loss results in a maximized CI score. For example, we achieved
a CI score of 0.93240.01 on the last quantile of MIMIC-IV with Survival Seq2Seq when a
higher weight was assigned to the ranking loss. This is almost 3% higher than the CI score
reported in Table 4 when calibration was the objective.

MAE is the metric of choice for calibration problems. This score is symmetric, i.e.
it does not care about the sign of the error and whether the model is overpredicting or
underpredicting. Depending on the context and nature of the survival problem, it might be
useful to consider a calibration metric that evaluates a model differently for overshooting
and undershooting. Such a metric helps to better evaluate survival models in situations
that overpredicting or underpredicting is costlier than the alternative.
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Survival Seq2Seq can accurately follow the distribution of the event time for long-tail
datasets, while DDH and many other survival or regression models cannot. This is an
interesting feature of our model and we mainly consider this as a side contribution of the
RNN-based decoder network to our model. We were initially not sure if this feature of the
model is a result of using GRU-D cells in the encoder of our model, the modified ranking
loss, or the use of an RNN-based decoder. We created a second version of Survival Seq2Seq
with the same RNN-based decoder network as the original model, but without the GRU-D
layer in the encoder and without the modified ranking loss. We used a simple masking
technique for dealing with missing measurements. This version of Survival Seq2Seq was
still able to follow the distribution of the time-to-event on long-tail datasets, although the
accuracy of the model dropped. Therefore, we concluded that the RNN-based decoder was
the main contributor to this interesting feature of our model in performing well on long-tail
datasets. However, the exact underlying mechanism of this phenomenon is unknown to us
and requires further investigation.

Based on the provided results in terms of MAE and CI score, we proved that Survival
Seq2Seq has a high prediction accuracy. However, accuracy metrics are not the only factor
that must be taken into account when evaluating the performance of a survival model. We
believe that the quality of predicted PDF's is as important as the accuracy metrics. As the
provided PDF sample in this paper shows, the generated PDFs of Survival Seq2Seq are
exceptionally smooth and ripple-free. This is an outstanding feature for a non-parametric
survival model.

Limitations

The GRU-D layer that makes the first layer of the encoder of our model relies on previously
measured values and the mean of covariates to impute missing data. If a covariate for a row
of data (a patient) is missing while it is not previously measured, GRU-D has no choice but
to impute that missing value with the mean of the covariate. This is not an ideal behavior
and we believe that it is contributing to lower performance of Survival Seq2Seq in the first
quantile of data, where there are not enough measurements for GRU-D to properly impute
missing variables. We acknowledge this limitation of our model on early predictions and
encourage the readers to think of ways that could mitigate this phenomenon.

There is a limit to the length of the encoder and decoder of Survival Seq2Seq. Both
networks are RNN-based. Consequently, they cannot pass information through time if
their length exceeds a certain limit. However, using the attention mechanism solves this
problem to a certain extent. We kept the maximum length of the encoder up to 60 time
steps for MIMIC-IV. During data pre-processing, if two covariates of a data sample are
measured at relatively close timestamps, we consider the average of those timestamps as
the unique timestamp for those two measurements. This helps us to reduce the number
of longitudinal measurements for a given row of data (or a patient) in the dataset. If the
number of measurements exceeds the maximum of time steps, we only keep 60 randomly-
selected measurements from that row of data, while discarding the rest. Although, we were
able to use a higher maximum length, we did not notice a meaningful accuracy improvement
using an encoder longer than 60 steps on MIMIC-IV. Similarly, the length of the decoder
is limited as well. However, we do not believe that the limit on the length of the decoder
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causes an issue for practical use cases. For example, in our experiments, we successfully
trained Survival Seq2Seq on MIMIC-IV with a 2-hour time resolution. The high resolution
decoder had a length twice the length of the decoder used for reporting the results in this
paper. Such an experiment shows that the length of the RNN-based networks does not
limit the ability of Survival Seq2Seq for practical use cases. However, one must be careful
not to cause vanishing gradients by setting very lengthy encoder and decoder networks.
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8. Appendix
Databases
MIMIC-IV DATABASE

The MIMIC-IV database contains health related data of ICU patients of Beth Israel Dea-
coness Medical Center, between 2008 and 2019. There is a total of number of 71791 distinct
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Table Total # of Covariates | # of Selected Covariates
INPUTEVENTS 282 30
OUTPUTEVENTS 69 5
CHARTEVENT 1566 73
Total 1917 108

Table 6: MIMIC-IV tables with their corresponding number of total and selected covariates.

ICU admission records with an average ICU stay of 4 days. This dataset includes vital
sign measurements, laboratory test results, medications, imaging report of the patients,
stored in separate tables. For mortality prediction, relevant covariates has been extracted
from the following three tables: 1) INPUTEVENTS (continuous infusions or intermittent
administrations), 2) OUTPUTEVENTS (patient outputs including urine, drainage, and so
on), and 3) CHARTEVENTS (Patient’s routine vital signs and any additional information
relevant to their care during ICU stay). We selected a total of 108 covariates from these
three tables. These covariates were selected based on the feedback from our medical team,
as well as conducting conventional feature selection techniques on the dataset. The number
of patients after feature selection dropped to 66363 with an uncensored (deceased patients)
rate of about 12%. The following table lists the total number of covariates and selected
number of covariates from each table.
Data Pre-Processing Considerations

e Patients with the following diagnosis are excluded from the data: Sudden infant death
synd, Unattended death, Maternal death affecting fetus or newborn, Fetal death from
asphyxia or anoxia during labor, Intrauterine death.

e Invalid measurements were removed from the data using the provided WARNING and
ERROR columns.

e In-valid measurements were removed from the data using the provided WARNING
and ERROR columns.

e Survival time was defined as the period between the time of admission and time of
death (for patients who died in hospital), or time of discharge (for censored patients).

e Time of observation is defined as the time of recording of the measurement with
admission time as the baseline.
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