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Abstract

Sepsis is the leading cause of death in intensive care units. It is challenging to treat sepsis
because the optimal treatment is still unclear, and individual patients respond differently
to treatments. Recent attempts to use reinforcement learning to provide real-time person-
alized treatment recommendations have shown promising results. However, the discrete
action design (i.e., discretizing the continuum of action space into coarse-grained deci-
sions) poses problems in policy learning and evaluation, and limits the effectiveness of the
treatment recommendations. In this work, we proposed a continuous state and action
space solution inspired by the Deep Deterministic Policy Gradient (DDPG) algorithm. We
performed qualitative evaluations and applied the direct method for off-policy evaluations.
Our results match clinician performance and are more clinically reasonable and explainable
than the state of the art.

1. Introduction

Sepsis is a life-threatening condition caused by the body’s response to infection. It can
cause a cascade of changes that damage multiple organ systems, leading them to fail, and
potentially death (Singer et al., 2016). Sepsis is expensive to treat; In 2011 alone, the
US spent 20.3 billion dollars on hospital care for septic patients (Pfuntner et al., 2014),
and it remains one of the leading causes of death in intensive care units. Vasopressors
and intravenous fluids (IV fluids) are two commonly used treatment strategies for septic
patients besides antibiotics (Waechter et al., 2014). Specifically, IV fluids are used to treat
hypovolemia and vasopressors are also used to deal with low blood pressure induced by
vasodilation. Deciding the optimal dosage of vasopressor and IV fluids is crucially important
because they directly impact patient outcomes (Waechter et al., 2014). However, it is
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Table 1: Actual dosage range of each action after applying discretization strategy pro-
posed in (Raghu et al., 2017). Different types of vasopressors are converted to
noradrenaline-equivalent, and the unit is mcg/kg/min. IV fluids are corrected for
tonicity and converted to a standard unit.

Action Number 0 1 2 3 4

Drug

Vasopressors 0.00  (0.00, 0.08] (0.08 , 0.20] (0.20, 0.45] (0.45 , 189.08]
IV fluids 0.00 (0.00, 50.00] (50.00, 152.14] (152.14,500.00) (500.00, 10000.00]

also challenging because individual patients may respond differently to the same treatment
strategy.

The recent advancements in machine learning and its various successful applications in
the healthcare domain have drawn researchers’ attention to reinforcement learning (RL),
a sub-domain of machine learning specializing in optimizing sequential decision-making.
Various efforts have been devoted to searching for personalized and real-time treatment
strategies for sepsis to improve patient outcomes. Komorowski et al. (2016) are the first to
formulate sepsis treatment optimization as a reinforcement learning problem and propose a
discrete action and state solution to address this problem. Various follow-up works extend
this idea with improvements in different aspects and demonstrated promising results (Yu
et al., 2019; Raghu et al., 2017; Killian et al., 2020; Jia et al., 2020). However, several
critical problems remain unaddressed hindering the real-world deployment of RL solutions
for sepsis treatment.

Because most existing RL algorithms and quantitative evaluations are designed for dis-
crete actions, previous works opted to recommend a coarse range of dosages instead of a
precise recommendation of dosages (actions) (Raghu et al., 2017; Killian et al., 2020) . They
discretized the action space into per-drug quartiles resulting in 5 options for each drug, with
each option representing dosages in a particular range. However, it is more complicated in
practice for clinicians to make decisions on what type of vasopressor to use and what dosage
should be given (Rhodes et al., 2017). The most significant caveat of this design is that it
may provide minimal clinical usability. For example, as you can see from Table 1, Action 4
for both IV fluids and vasopressors falls into a vast range due to the fact that dosages are
exponentially distributed. Therefore, when a RL policy recommends Action 4 for vasopres-
sors, the clinicians still need to decide the value ranging from as little as 0.45 to as large as
189.0. The same applies to the case of IV fluids. Moreover, the discrete action design poses
problems in qualitative and quantitative evaluations of RL policy performance as it tends to
introduce extra artifacts Gottesman et al. (2018). Another issue with previous work is that
a RL policy often suggests minimal dosage for patients with very high acuity (Sequential
Organ Failure Assessment score Lambden et al. (2019)). This behavior is reasonable for
RL algorithms but is not logical and explainable from a clinical perspective.

In this paper, we propose an RL-based solution in continuous space for both states
and actions. Conventional offline RL algorithms such as deep Q-learning do not support
continuous actions. More recently, Lillicrap et al. (2015) proposed Deep Deterministic Policy
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Gradient (DDPG), which is a model-free off-policy algorithm for learning continuous actions.
For this reason, We first utilize a DDPG-based algorithm adapted for environments with
continuous action and states to provide high-resolution dosage recommendations. Secondly,
to address the issue with minimal dosage at high acuity, we modify the actor-network loss in
DDPG by imposing an extra penalty term that forces the policy network to output actions
similar to what clinicians would provide. Our qualitative results show that our RL policy
overall resembles clinician policy with similar action distributions under different regimes.
We perform off-policy evaluations based on a more direct and realistic metric instead of
the commonly-used importance sampling-based methods in previous works (Killian et al.,
2020; Raghu et al., 2017; Komorowski et al., 2016). This is because the importance ratio
in these importance sampling-based methods is infeasible to be computed in a continuous
action space. Our quantitative results demonstrate that our proposed solution matches the
performance of clinician policy and outperforms random policy baselines.

Generalizable Insights about Machine Learning in the Context of Healthcare

e Improving the resolution of decision support provides more meaningful
results and effective recommendations. Higher-resolution prediction generally
translates into more meaningful clinical decision support and would be considered as
a step up toward potential future deployment. It is imperative to consider improving
the granularity of prediction since it provides more insights and helps improve the
method.

e Using RL algorithms to solve real-world problem is challenging and often
requires ad-hoc adaptation. It is often not feasible to directly apply an existing al-
gorithm to the healthcare domain problems without considering the context. In many
cases, the approach will fail. Carefully designing ad-hoc machine learning approaches
by incorporating clinical insights is crucial to successfully applying machine learning
in healthcare.

e Extrapolation errors affects learning and evaluation in Offline RL algo-
rithms. Existing offline RL algorithms are known to perform poorly at extrapolating,
which directly affects the policy learning and evaluation in previous studies as well as
in our work. New advancements in machine learning research capable of addressing
this issue would benefit efforts in RL in healthcare applications, especially in robust
evaluations of the performance of RL policies.

2. Related Work

A spectrum of previous studies has explored applying RL algorithms to optimizing sepsis
treatments. Komorowski et al. (2016) is one of the very first to formulate this as a rein-
forcement learning problem, and proposed a discrete action and state solution based on the
value-iteration algorithm. Raghu et al. (2017) further extends this idea to the continuous
state space and discrete action space by using Q-learning, besides several novel qualitative
evaluation methods introduced in this work, it also formally uses off-policy evaluation to
quantify the performance of their proposed RL policy. Following this work, Raghu et al.
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(2018) and Peng et al. (2018) further investigated this area using more advanced RL meth-
ods to approach this problem ranging from using model-based RL algorithms to combing
deep RL with kernel-based RL approaches. Another line of work focuses more on provid-
ing more clinically meaningful and interpretable results, such as in (Jia et al., 2020), they
proposed a safer RL-based solution by incorporating current clinical knowledge and prac-
tice. More recently, Gottesman et al. (2018) surveyed the existing literature using RL for
sepsis treatment, and by analyzing some common issues in previous works, they provided
guidelines for clinical and computational researchers to help with designing and evaluat-
ing algorithms for new ways of treating patients. To our knowledge, we are the first to
explore designing RL-based sepsis treatments in continuous action space. Inspired by sev-
eral previous studies and the takeaway from Gottesman et al. (2018), we incorporate the
safety constraints into our algorithm design and provide both qualitative and quantitative
evaluations of our proposed solution.

3. Background

Reinforcement learning models a sequence of decisions as agents interact with an environ-
ment over time to maximize long-term rewards. The interactions between agents and the
environment are commonly modeled as Markov Decision Process (MDP), where S is the
state space, A is the action space, and P denotes the state transition dynamic. R is the
reward function representing the intermediate reward an agent received from the environ-
ment, and is used to measure the goodness of actions, and -y is a discount factor. At each
time step ¢, the agent observes a state s; and chooses an action a; according to the policy
m(a,s). In our case, the policy is deterministic. After the action is taken, the agent re-
ceives a reward r; from the environment, and the state s; transits to the next s;41. The
objective of RL algorithms is to maximize the long-term accumulated rewards (formally,
E[Y,~" % r4]). RL algorithms can be divided into online and offline based on the nature
of data sampling process. Unlike online RL, where the next batch of data must come from
the newly updated policy whenever we improve the policy, off-policy algorithms evaluate
and improve a target policy that is different from the observational policy used to generate
the data. In our case the observational policy is the clinician policy. In the context of
healthcare applications, it is not feasible to employ online RL algorithms due to safety and
ethical issues. The most representative offline RL algorithm is Q-learning, which is built
based upon the Bellman Equation Q*(s,a) = r(s,a) + v * max, E[Q*(s', a’)], where Q*() is
the optimal function approximator that estimates the future accumulate reward given the
current state and action. Q-learning methods learn an optimal policy by minimizing the
temporal difference (TD) error, defined as r(s,a) + v * Q*(s',d’) — Q*(s, a).

In safety-critical situations, it is costly and risky to try a new policy in the real world
without evaluating it. Off-policy evaluation (OPE) is a statistical framework that estimates
the value function of a specific target policy, usually using information from another policy
used to generate the data. Weighted Importance Sampling (WIS) Estimator and Doubly-
Robust (DR) Estimator are the most commonly used OPE methods, and are widely applied
in evaluating RL-based policy.
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Figure 1: High level diagram of the proposed method

4. Methods

This section covers our proposed reinforcement learning algorithms and the quantitative
evaluation methods for the RL policies, Figurel depicts the high-level diagram of our ap-
proach.

4.1. DDPG with Clinician Supervision

Q-learning-based algorithms have been extensively explored to problems in the healthcare
domain. However, vanilla Q-learning has its own limitation as it only works for discrete
actions (Mnih et al., 2013). To allow policy learning in continuous action space, we applied
DDPG algorithm, which extends Q-learning to the continuous action space. DDPG uses
Bellman equation to learn the Q-function with bacthed data (Off-policy data), and the
policy is then learned using the Q-function. The Q-function learning part is similar to
Q-learning, where the goal is to learn an approximator to Q-function Q*(s,a), and the
approximator is typically a neural network parameterized by ¢. The Q-function is learned
by minimizing the mean squared Bellman error function given below, which describes how
well QQy satisfies the Bellman equation:

L(¢p,D)= E [(%(M) - (r (1 = d)maxQy (s, a')>>2] (1)

(s,a,r,s',d)~D
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Here d is a variable indicating if s’ is a terminal state.
The major distinction between DDPG and Q-learning comes from the policy learning
part. In Q-learning, the optimal action a*(s) can be found by solving

a*(s) = arg max Q*(s,a) (2)

The argmax operation is convenient in discrete action space with a few action options.
However, when the action space is large or continuous, it poses a problem since it would
be computationally infeasible to exhaustively evaluate all possible actions. DDPG instead
proposes to use a deterministic target policy network pg parameterized by 6 to replace the
argmax operation, and it directly outputs the action that approximately maximizes the
Q-function. We may assume the Q-function is differentiable with regards to parameter ©,
and is learned by maximizing the Q-function.

max B [Qo (5, 10(s)] 3)

DDPG works well in many other applications, but still faces the same problem many
other previous works have, that is, recommending small dosages when patients are critically
sick. To make recommendations more clinically useful and meaningful, Gottesman et al.
(2018) suggest limiting policies to be similar to physicians. This is because we cannot eval-
uate actions that clinicians never try. It is easy for algorithms to become overly optimistic
about actions rarely performed in practice on particular patients (Gottesman et al., 2018).
Taking this motivation into consideration, we propose to redesign the policy network train-
ing loss (Equation 3) by incorporating the divergence between the clinician action and the
RL policy.

max B [Q(s, to(s)) = A+ (a, po(5))”] (4)

Note that there is a time delay in this penalty term where we compare RL policy’s
next time step action pg(s) to clinicians’ current time step action a, instead of the actual
clinicians’ following time step action a’. The reasons are two folds. First, we want to avoid
degenerating DDPG policy learning into simple behavior cloning, which aims at mimicking
clinicians’ decision-making but, in theory, will not outperform the demonstrator. Secondly,
this time delay could naturally serve as a safety constraint in decision-making. As pointed
out by Fadale et al. (2014) and Allen (2014), a drastic change in vasopressor dosage is
dangerous to some patients. It could lead to various aftereffects such as acute hypotension
(arising from rapidly decreasing doses), hypertension, or cardiac arrhythmias (arising from
rapidly increasing doses); therefore, it is essential also to consider the previous action when
making action recommendations.

For more implementations details, please refer to Appendix section.

4.2. Off Policy Evaluation with Direct Method

Proper quantitative evaluation of learned policy is crucial before deployment, especially
in healthcare. However, Off policy evaluation (OPE) with continuous treatment in the
reinforcement learning context is challenging and remains an open research question due to
its statistical sophistication.
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Table 2: Demographic information of the selected sepsis cohort

Characteristic Sepsis cohort
Female percentage 55.81%

Mean Age 64
Readmission Rate 7.31%

Mean weight in Kg 88.11
Mechanical Ventilation Rate 36.82%

N 19633

Previous work for discrete treatment /action spaces focuses on WIS and DR methods that
use a rejection sampling approach for evaluation. In the continuous setting, this reduction
is not applicable as we would almost reject all observations (Kallus and Zhou, 2018).

We apply another simple yet effective approach named the direct method to tackle
this challenge. The direct method lends itself to continuous treatment since it completely
circumvents the computation of importance ratio. The key idea is to use the Q-function
estimation directly as accumulated reward estimation.

ppm = En [Ewe [Q (s0,a0) | 30” (5)
where

E

o
> A So,a()] = @ (50, ao)
=0

Here 7, is the policy distribution to be evaluated and N is the number of data points.
Note that one caveat of applying the direct method is that the estimate could be inaccu-
rate under model misspecification. In other words, when the learned Q-function is not an
accurate representation of the accumulated reward, the results could be unreliable.

5. Cohort

We acquired a cohort of sepsis patients and their physiological data in electronic health
records (EHR) from the MIMIC-III database (Johnson et al., 2016).

5.1. Cohort Selection

The cohort is selected from MIMIC-3 based on sepsis-3 criteria by employing the preprocess
steps from (Killian et al., 2020), and this yields a list of 19633 patients who develop sepsis at
some point during their ICU stays. Table 2 details demographical statistics of our selected
cohort.

5.2. Data Extraction

Before selecting a sepsis cohort, we first extracted a list of relevant observations useful for
cohort selection or state representation according to Killian et al. (2020)’s implementation.
In total, we include 38 features which consist of demographics, vital signs, and lab tests.
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The complete list of features we selected can be found in Appendix. We then discretize
each patient’s trajectory into 4-hour windows. The missing value is linearly interpolated
or imputed (using K-nearest neighbor), depending on whichever is more appropriate. If
there are multiple observations for a variable in that 4-hour time window, the values are
averaged. The aggregated data is later used to select a cohort that satisfies sepsis-3 criteria
and build their corresponding state representation.

5.3. MDP Formulation

After the sepsis cohort is selected, we formulate the aggregated data into MDP format such
that it is learnable by RL algorithms. This process includes state representation, action
formulation, and reward design.

5.3.1. STATE REPRESENTATION

We first normalize observations and then, following conventions in previous literature, we
truncate all long trajectories with only data in the first 21 time-steps retained. Various
previous works have demonstrated that compressing the raw observations into latent rep-
resentation is necessary and desirable for policy learning (Raghu et al., 2017; Killian et al.,
2020). In this work, we apply an autoencoder to build the latent representation as described
in Killian et al. (2020).

5.3.2. ACTION

A wide range of treatments could be employed to treat septic patients, including vasopres-
sors, IV fluids, and antibiotics. In this work, we focus on recommending the dosage of
vasopressors and IV fluids. Unlike previous works, which binned the continuous value of
dosages based on a quantile, our actions are continuous, and any number within the safety
range could be recommended.

5.3.3. REWARD FOrRMULA

Ideally, the reward formulation should be clinically-informed. The reward should be positive
when the patient’s state improves and negative when the patient’s condition deteriorates,
and it is supposed to comprise the best indicators of patient health. Thus, we opted for
a reward design based on the SOFA score as it is a good indicator of patients’ health and
is widely used in clinical settings. A practical reward function should penalize high SOFA
scores and reward low SOFA scores. Moreover, the reward should decrease when SOFA
scores increase between states. Motivated by this, our reward function is as follows:

T (St, St41) = Altanh(stSOFA —6) + Ao (S?_%FA — StSOFA)) (6)

where A\g = —0.25 and A; = —0.2. The first term is a base score determined by the
current SOFA score. It is positive when the SOFA score is relatively low, and becomes
negative when the SOFA score is high. The cut-off number 6 is determined based on
previous literature on the association between SOFA score and mortality (Ferreira et al.,
2001). The second term reflects the trend of patients’ physiological state change, with
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Figure 2: Distribution of IV fluids and vasopressors given by clinicians and RL policy, y
axis for vasopressors is converted to log scale for better visualization.

positive values assigned when patients are recovering and negative values when conditions
worsen.

6. Results

We conduct qualitative and qualitative evaluations to estimate the performance of the
proposed RL policy and analyze the difference between actions recommended by the RL
policy and clinicians. All evaluations are performed on a separate test set.

6.1. Qualitative Evaluations

This section provides qualitative results of the evaluation policy and its comparison with the
clinician policy. Figure 2 shows the overall dosage distributions of IV fluids and vasopressors.
For vasopressors, the distribution of RL policy resembles that of the clinician with minor
differences; specifically, RL policy recommends slightly more zero dosage, and overall, large
dosage is less often suggested than the clinician dosage. For IV fluids, our RL policy rarely
recommends zero dosage and suggests higher dosage than clinicians.

We further investigate how RL policy behaves under different regimes compared to
clinician policy. Specifically, we present the average dosage given by RL policy and clinicians
as SOFA score changes (Figure 3). The RL and clinician policies follow a similar trend for
vasopressors and IV fluids. That is the recommended dosage increases as the SOFA score
increases. This is one of the major differences between this work and previous studies,
where previous studies tend to give minimal dosage when SOFA scores are high.
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Figure 3: Dosage given by RL policy and clinicians under different sofa score, mean value
along with stand errors are presented in this figure

Another commonly used heuristic-based measurement of performance is called the U-
curve plot. The idea is to associate the difference between the clinician’s policy and the
evaluation policy with outcomes such as mortality. In this plot, observed mortality at
different dosage deviations is aggregated. Its signature U-shape shows that the observed
mortality reaches its lowest when RL policy dosage equals clinical dosage and the mortality
increases when the dosage differences elevates. As pointed out by Gottesman et al. (2018),
the U-shape could potentially be an artifact of how actions are binned. Note that the
RL policies can only recommend actions in a rough range. Therefore, to calculate the
exact difference between RL actions and clinicians’ actions, an arbitrary number has to
be chosen from the suggested range to represent the RL action. Thus, the results could
be completely different when choosing a different binning strategy. In this work, we are
providing continuous dosages recommendations, and eliminate this artifact. As we can
see from Figure 4, the U-shape pattern still exists in continuous action space, with the
observed mortality reaching its lowest when the dosage deviations are around zero. Similar
to previous work (Gottesman et al., 2018), when we use the no-action policy, which is
deemed a sub-optimal policy to compare with the clinician policy, the results are similar.
For no-action policy, this trend reveals the association between observed mortality and the
dosage given by clinicians. When patients are sicker and more likely to die in hospital, they
tend to be treated more aggressively with larger dosages, and the U-shape pattern for the
RL policy cases could also be for the same reason. Therefore, the validity of the U-curve
plot method is questionable and further discussed in our discussion section.

10
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Figure 4: U-curve plot, y axis is the observed mortality under clinician policy and x axis
is the dosage difference between clinician policy and evaluated policy, no-action
policy refers to an action that only recommends zero dosage of vasopressors and
IV fluids

6.2. Quantitative Evaluations

We perform off-policy evaluations with the direct method as described in Section Off Policy
Evaluation with Direct Method to quantify the performance of our RL policy. We use
clinician policy, random policy, and no-action policy as baselines. The clinician policy
comprises actions from historical data which clinicians take. For random policy, actions
is uniformly sampled from the 0 to safety upper bound range. Furthermore, for no-action
policy, the results are the expected accumulated reward if no actions are taken at any given
state. To account for randomness, we performed 30 experiments with a unique train/test
set split in each experiment, and the results are presented in a box plot, as shown in Figure
5.

The quantitative results demonstrate that our proposed solution matched the perfor-
mance of clinician policy while significantly outperforming the random action policy base-
line. One unexpected observation in Gottesman et al. (2018) is that the no-action policy has
the best quantitative performance. In this work, we also observed that the no-action policy
was slightly superior to both the RL and clinician policies. To the best of our knowledge,
this issue is likely to be caused by extrapolation errors in offline reinforcement learning, and
we further discuss this matter in the following section.

11
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Figure 5: Off policy evaluation results on all evaluated policies

7. Discussion

Various pioneering studies have explored applying reinforcement learning algorithms to the
search for optimal sepsis treatment (Raghu et al., 2017; Gottesman et al., 2018; Killian
et al., 2020). These studies have demonstrated the potential of using RL to improve ICU
patient outcomes. However, these studies are limited to a coarse-grained discrete action
space that poses several policy learning and evaluation problems. In order to make per-
sonalized treatment design more clinically meaningful, we proposed a continuous action
space RL solution that provides much more fine-grained clinical decision support. First of
all, by extending actions to continuous space using DDPG family algorithms, we provide
more meaningful and higher-resolution decision support to patients. This improvement also
makes reinforcement learning-based sepsis treatment search closer to real-world deployment.
We first addressed the problem from previous work that the actions recommended by RL
algorithms are ambiguous in the large dose case. The vast range of possible dosage options
makes it less applicable in the real world for clinician decision support. Besides that, the
decision support at time steps when patients are recommended with a higher dosage is more
critical compared to low dosage cases since patients who are given larger dosages are asso-
ciated with worse outcomes. Secondly, the discrete action design oversimplifies the complex
research problem and brings multiple challenges to the policy learning and evaluation of
reinforcement learning algorithms. With the proposed solution, the actions are now learned
in a clinical-guided fashion and under safety constraints, resulting in a dosage distribution
close to clinician policy and more reasonable from a clinical perspective. Namely, when
patients have higher SOFA scores and worse conditions, our algorithm no longer provides
minimal drug dosages, which are common in previous works but do not make clinical sense.

12
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As for qualitative evaluations, we carefully investigate the similarities and differences
between the RL policy and the clinician policy. By eliminating the artifacts caused by
discretizing actions, we provided a clearer picture of the associations between outcomes and
RL-clinician policy agreements, which may help us determine the validity of the U-curve
plot. Although the U-shape pattern extends to continuous action space and may indicate
that when the clinician’s decisions agree with the algorithm, the outcome is the best, we
may not be able to make any conclusions on the efficacy of RL policy. First of all, when RL
policy agrees with clinician policy, the decision-making is likely to be easier because, in those
scenarios, the observed mortality is low, and the patients are usually in better conditions.
As a result, the actual dosage given by clinicians is either zero or minimal. Secondly,
at its core, the actual mortality can never be assessed without deploying the evaluation
policy. When the clinician policy disagrees with the RL policy, one may argue that the
outcome might be better if the clinician employs the algorithms’ recommended dosage.
However, the results could also be the opposite. Therefore, we believe that the U-curve plot
provides little clinical significance when evaluating the performance of a RL policy. As for
quantitative policy evaluation, we removed the biggest hurdle in off-policy evaluation with
the direct method approach, which is essential in quantifying the performance of continuous
action solutions. The direct method is intuitive and straightforward as it does not require
importance sampling. The results from off-policy evaluations showes that the proposed the
RL policy matches clinicians’ performance and significantly outperforms the random policy
baseline. However, the overestimation of zero policy remains a problem, and as mentioned,
this problem resides deeply in the roots of offline reinforcement learning mechanisms, and
its solution is out of the scope of this work.

Limitations Sepsis treatment guidelines are evolving rapidly in practice and our data is
slightly outdated.

Fairly comparing the proposed method to discrete action methods is difficult because
each method has its unique Q-value estimator that suits its own design, and qualitative eval-
uation based on outcome prediction is not well validated. Therefore, we did not perform a
direct comparison between the proposed solution against discrete action methods. However,
it is still important, and we will keep exploring alternatives in the future. Overestimation
of the no-actions or minimal actions remains a significant problem due to the weakness of
extrapolating in offline reinforcement learning algorithms. This is also why we observe that
the no-action policy having better performance in OPE. Addressing this issue is outside
the scope of this work, but it is important for future exploration from both policy learning
and policy evaluation aspects. For example, we may consider calibrating the extrapolating
errors in Q-learning-based algorithms using techniques proposed in Kumar et al. (2020).

Moreover, although off-policy evaluations using direct methods are simple and suit well
for continuous action space, the soundness of the direct method relies on the accurate
estimation of the Q-value. On the other hand, several other OPE methods with continuous
treatments have been proposed. For example, Kallus and Zhou (2018) use kernel density
estimation to solve the importance sampling problem while Cai et al. (2021) propose a
discretization-based approach using deep jump learning to address continuous actions. Most
of these efforts are designed for contextual bandit problems, but they could potentially be

13
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extended to reinforcement learning problems, and we expect to explore these approaches
for more reliable off-policy evaluations in future works.
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Appendix A. Appendix A.

A.1. Code availability

Our implementation can be found here: https://github.com/acneyouth1996 /RL-for-sepsis-
continuous

A.2. DDPG modifications

In our actual implementation, We utilized several improvements in twin delayed DDPG
(TD3) (Fujimoto et al., 2018), which is an enhancement of DDPG to our final model to
address some common problems of DDPG, these improvements are listed below.

e Clipped Double-Q Learning. TD3 learns two Q-functions instead of one and uses
the smaller of the two Q-values as the targets in the Bellman error loss functions.
This design addresses the problem of the overestimation of Q-function.

e “Delayed” Policy Updates. TD3 updates the policy network less frequently than
the Q-function.

e Target Policy Smoothing. TD3 adds noise to the target action in training phase.
This design allows the policy network to explore a broader range of actions.

A.3. Selected Features
A.3.1. Demographics

Gender, Mechanical ventilation, Readmission, Age, Weight.

A.3.2. Observations

Glasgow Coma Scale/Score; Heart Rate; Systolic Blood Pressure; Mean Blood Pressure;
Diastolic Blood Pressure; Respiratory rate; Body Temperature, FiO2; Potassium; Sodium,;
Chloride; Glucose; Magnesium; Calcium; Hemoglobin; White Blood Cell Count; Platelets
Count; PT - Prothrombin Time; PTT - Partial Thromboplastin Time; Arterial pH; PaO2;
PaCO2; Arterial Blood Gas; HCO3; Arterial Lactate; PaO2/FiO2 ratio; SpO2; SGOT
- Serum Glutamic-Oxaloacetic Transaminase; Creatinine; BUN - Blood Urea Nitrogen;
SGPT - Serum Glutamic-Pyruvic Transaminase; INR - International Normalized Ratio;
Total bilirubin.

A.4. Experiment configurations
A.4.1. AutoEnoder Hyperparameters

e Autoencoder number of layers: 3
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Autoencoder training epochs: 100
Hidden size: 16

Autoencoder learning rate: 0.001

A.4.2. DDPG Hyperparameters

mini-batch size: 32

Actor network number of layers: 3
Critic nerwork number of layers: 3
Actor network hidden size: 32
Critic network hidden size: 32
Replay buffer size: 350000
Reward discount factor: 0.99
Weight update parameter: 0.01
Training iterations: 20000
Evaluation iterations: 5000

Actor network learning rate: 3e-3

Critic network learning rate: 3e-5
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