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Abstract

The number of women requiring screening and diagnostic mammography is increasing. The
recent promise of machine learning on medical images have led to an influx of studies us-
ing deep learning for autonomous mammogram diagnosis. We present a novel multi-view
multi-task (MVMT) convolutional neural network (CNN) trained to predict the radiolog-
ical assessments known to be associated with cancer, such as breast density, conspicuity,
etc., in addition to cancer diagnosis. We show on full-field mammograms that multi-task
learning has three advantages: 1) learning refined feature representations associated with
cancer improves the classification performance of the diagnosis task, 2) issuing radiolog-
ical assessments provides an additional layer of model interpretability that a radiologist
can use to debug and scrutinize the diagnoses provided by the CNN, and 3) improves the
radiological workflow by providing automated annotation of radiological reports. Results
obtained on a private dataset of over 7,000 patients show that our MVMT network attained
an AUROC and AUPRC of 0.855± 0.021 and 0.646± 0.023, respectively, and improved on
the performance of other state-of-the-art multi-view CNNs.

1. Introduction

Breast cancer is the most prevalent cancer diagnosed in women, with nearly one in eight
women developing breast cancer at some point in their lifetime. With the inclusion of
screening mammography into breast cancer prevention and detection, randomized clinical
trials have shown a 30% reduction of breast cancer mortality in asymptomatic women (Duffy
et al., 2002). The success of these early breast cancer screening programs have lead to an
increase in the total number of annual mammography exams conducted to nearly 40 million
in the US alone (Broeders et al., 2012). Many recent research efforts have been motivated
by the increasing number of mammograms requiring reading, presenting an opportunity to
automate and reduce the additional workload and responsibility placed on radiologists.
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We present a novel multi-view (MV) multi-task (MT) network as shown in Fig. 1. The
system is comprised of two components: 1) a CNN trained using multi-task learning, which
learns the radiological assessments known to be associated with cancer, such as breast
density, conspicuity, suspicion (analogous to BI-RADS score), etc., that will be referred to
here as MT-CNN and 2) a MVMT classifier that takes as input the predictions of the MT-
CNN to concatenate image views and determine a cancer prediction. For succinct notation,
we will refer to the MVMT classifier as MVMT throughout this paper.

Technical Significance MVMT provides several contributions to the machine learning
for mammography literature. MT learning is used to improve the diagnostic accuracy by
predicting the radiological and patient features known to be associated with cancer. Addition-
ally, we concatenate and fuse mammogram views for left and right breast and corresponding
mediolateral oblique (MLO) and craniocaudal (CC) views over the trained MT outputs,
which provides a reduced and refined feature space to improve classification performance.
Similar to our work, Geras et al. (2017) and Akselrod-Ballin et al. (2016) use full-images
but report area under the receiver operating characteristic curve (AUROC) lower than ours
at 0.753 and 0.78, respectively, on private datasets. Additionally, Geras et al. (2017) is the
only related work to use all four of a patient’s mammogram views for prediction. We report
on a private dataset one of the highest AUROC (without using any ROI), and show the
sources of gain attributed to MT learning, using all four mammogram views for prediction,
and test-time-augmentation (TTA).

Due to the large amount of data required for training large CNNs and the limited num-
ber of available datasets, many implementations require utilization of ROIs or segmentation
masks for maximizing performance. Our proposed method will allow existing mammogra-
phy datasets to be leveraged without requiring a trained expert to manually annotate tumor
locations or ROI. State-of-the-art implementations, utilizing region proposal networks, slid-
ing windows, or patch classifiers for mammogram diagnosis rely on radiologist labeled ROIs
and often have the highest reported diagnostic performance (Akselrod-Ballin et al., 2016,
2017; Becker et al., 2016; Carneiro et al., 2017; Jadoon et al., 2017; Jiao et al., 2016; Hepsag
et al., 2017; Kooi and Karssemeijer, 2017; Mohamed et al., 2018; Platania et al., 2017; Ribli
et al., 2017; Samala et al., 2017; Shen, 2017; Teare et al., 2017). However, all of these
works rely on a very scarce and costly commodity, i.e., a dataset with cancer locations
identified. ROI-based approaches have disadvantages other than the limitation of available
location-annotated datasets. First, high-level contextual features external to the ROI are
not learned (Geras et al., 2017). Secondly, in high noise scenarios where breast density
may hide a visible tumor, a radiologist considers macroscopic features (not captured in
ROI based methods), such as asymmetry between breasts, to assist in malignancy diagnosis
(Peart et al., 2017; Scutt et al., 2006). This work does not exploit any ROI annotations
and uses only full-field mammograms, which we refer to as image-level classification.

Clinical Relevance The recent success of convolutional neural networks (CNNs) in com-
puter vision tasks has resulted in an influx of publications and implementations applying
CNNs to mammography. There are two primary objectives or themes in the existing liter-
ature applying deep learning to mammography. The first, which occupies the majority of
the research share, is to assist the radiologists in making decisions through computer-aided
detection (CAD) (Abbas, 2016; Akselrod-Ballin et al., 2016; Dheeba et al., 2014; Huynh
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et al., 2016; Jiao et al., 2016; Kooi et al., 2016; Qiu et al., 2016; Samala et al., 2016). The
second objective, which has recently gained popularity, involves training CNNs to diag-
nose a patient without radiologist reading (Akselrod-Ballin et al., 2017; Becker et al., 2016;
Carneiro et al., 2017; Kooi and Karssemeijer, 2017; Mohamed et al., 2018; Ribli et al., 2017;
Shen, 2017). In this paper, we focus on the latter task of autonomous diagnosis.

In regards to clinical relevance, MVMT provides two unique benefits. First, MVMT
improves radiological workflow by providing automated annotation of radiological reports
through the MT predictions. Confidence estimates for each prediction are provided to a ra-
diologist, such that only the uncertain predictions would require a radiologist’s assessment
reducing the overall reading and report times. Second, MVMT was especially designed to
explain its predictions; it issues not only cancer predictions, but also radiological assess-
ments, such as the conspicuity, suspicion, breast density, etc., in a similar manner as a
radiologist would make an assessment. This allows our approach to provide radiologists
more interpretable predictions and estimates, thereby facilitating human-machine collabo-
ration in mammography. For example, MVMT may predict a patient have cancer, but the
multi-task annotations reflect a huge discrepancy in the presentation or sign of lesion which
a trained radiologist could question and reexamine the report.

2. Methodology

2.1. Problem Formulation

In this section, MVMT is formalized according to the illustration in Fig. 1. The system
performs two primary predictions: 1) MT-CNN feature extraction, and 2) MVMT diagnosis.

Let X = Xs × Xm, Xr, and Y be three spaces, where Xs is the patients’ non-imaging
feature space (such as age), Xm is the patients’ mammogram imaging feature space, Xr
represents the radiologists interpreted mammogram features (such as breast density, con-
spicuity, etc.), and Y is the space of all possible diagnoses, that is Y = {0, 1}, where 0
corresponds to normal and 1 corresponds to malignancy.

Given a patient, x ∈ X , let a radiologist as a classifier be defined as a map, R : X →
Xr ×Y, which takes as input a patient’s non-imaging features, xs ∈ Xs, and mammograms,
xm ∈ Xm. R provides as output the radiological annotation, xr ∈ Xr, and the patient’s
cancer outcome, yx ∈ Y. For patient x with mammogram views xm ∈ Xm = Xm1 × Xm2 ×
Xm3×Xm4 , let Xmi represent a view from a patient’s four mammogram views: mediolateral
oblique (MLO) right and left, and craniocaudal (CC) right and left. Additionally, for
each of x’s mammogram views, xmi ∈ Xmi , the radiologist prediction for that i-th view
is xri ∈ Xri , such that xr ∈ Xr = Xr1 × Xr2 × Xr3 × Xr4 . The MT-CNN is defined by
a map, M : Xmi → Xri × Yi, where M takes as input one of a patient’s mammogram
views, xmi ∈ Xmi , and outputs the radiologist prediction for that view, xri ∈ Xri , and
the patient’s actual cancer outcome for that view, yxi ∈ Yi. MVMT is defined as a map,
C : Xs×Xc → Y, where C takes as input the patient’s non-imaging features, xs ∈ Xs, and the
MT-CNN predictions for each mammogram, M(xm1)×M(xm2)×M(xm3)×M(xm4) ∈ Xc.
C outputs a diagnostic prediction of the actual cancer outcome, yx ∈ Y.
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Figure 1: Full MVMT network as a stacked classifier of 4 MT-CNNs. Highlighted are the
multi-task outputs of each view and how they are fused to generate the MVMT
network. The mammogram conspicuity is abbreviated by conspic.

2.2. MVMT System

MVMT is a multi-view CNN designed to provide an accurate diagnosis given a patient’s
four mammogram views. MVMT is trained in two consecutive stages: 1) the MT-CNN over
each image and 2) MVMT over a patient’s four mammogram views. The neural network
architecture for the the overall system is shown in Fig. 1.

The primary objective of the first training phase is to generate the MT-CNN that
predicts both the diagnosis and radiological assessments on an individual mammogram
view basis. The objective of our second training phase is to train a classifier that takes as
input the multi-task outputs (MTO) of MT-CNN for each of a patients four mammogram
views and predicts a patient-level diagnosis. In the current literature, this is done by
combining multiple mammogram views at the dense layers before the final output layer
(Carneiro et al., 2017; Geras et al., 2017). However, we choose to combine multiple views
over the MTO for two reasons. First, the MTO are extracted imaging features that emulate
radiological assessment and are what radiologists would naturally consider when reading
multiple mammogram views. For example, breast density asymmetries between left and
right breasts are often indicators of cancer (Scutt et al., 2006). Second, by pre-training MT-
CNN in the first training phase, the MTO serves as a refined feature space for combining
mammograms, requiring no retraining of layers prior to the MTO, and improves performance
in scenarios where there is limited data.
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MT learning is used to fine-tune MT-CNN providing several additional benefits. The
work of Argyriou et al. (2006) demonstrates both empirically and theoretically the perfor-
mance advantages of learning related tasks simultaneously over each task independently.
This is amplified in situations when some tasks have very few data points and would be
nearly impossible to learn individually. Additionally, MT learning is leveraged to learn
refined feature representations and improve classification performance of the primary task
(cancer diagnosis), by obligating MT-CNN to learn the radiological assessment known to be
associated with cancer, such as the breast density, conspicuity, or suspicion. Finally, con-
catenating and fusing mammogram views for left and right breast, including corresponding
MLO and CC views for each, over the trained MTO provides a reduced (and refined) fea-
ture space that improves classification performance, particularly in data-starved scenarios
(Heitz et al., 2009). Concatenation of mammogram views could be performed at a subse-
quent dense layer (Sesmero et al., 2007), but these layers in practice are typically larger and
thus require more training data. The sources of gain attributed to MT learning are shown
experimentally in the results section.

3. Experiments

3.1. Dataset

The Tommy dataset was originally compiled to determine the efficacy and diagnostic per-
formance of digital breast tomosynthesis (DBT) in comparison to digital mammography.
The dataset was collected through six NHS Breast Screening Program (NHSBSP) centers
throughout the UK and read by expert radiologists (Gilbert et al., 2015). It is a rich and
well-labeled dataset with over 7,000 patients (over 1,000 malignant) who received diagnostic
mammograms, and includes radiological assessments, density estimates (µ = 38.2, σ = 20.7)
along a 10-cm visual analogue scale (VAS), age at examination (µ = 56.5, σ = 8.75), pathol-
ogy outcomes from core biopsy or surgical excision, and both mammography and DBT imag-
ing modalities. Although not all patients in the Tommy dataset underwent biopsy, each
patient underwent expert radiological readings of both DBT and mammography modalities
that significantly reduced the likelihood of false negative readings by as much as 15 to 30
percent (Gilbert et al., 2015). The Tommy dataset does not contain ROI annotations, but
it does contain many useful radiological assessments that we leveraged for MT learning.

The Tommy dataset was designed to challenge the radiologist with overlapping breast
tissue cases. In this dataset, it is estimated that roughly 50% of patients have overlapping
tissues that show up on standard 2D mammograms that would falsely manifest as suspicious
features (Gilbert et al., 2015). The patient criteria for selection were one of the following:
1) women recalled after routine breast screening between the ages of 47 and 73, or 2) women
with a family history of breast cancer attending annual screening between ages of 40 and
49.

3.2. Mammogram Preprocessing and Augmentation

Mammogram processing steps were performed in several stages. Processed mammograms
were converted from DICOM (Digital Imaging and Communication in Medicine) files into
uncompressed 16-bit monochrome PNG (Portable Network Graphics) files. In this step, all
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mammogram views were rotated and oriented with the breast along the left margin with
nipple oriented to the right. Mammograms were not cropped, and Lanczos down-scaling
was used to reduce the full-field mammograms to 960 x 1264 pixels to fit within our GPU
memory. This maintained and preserved the width-to-height aspect ratio of 1 : 1.3 for all
mammogram fields of view.

During training, mammograms were augmented to prevent over-fitting and promote
model generalizability. Image augmentation was run through the Keras image processing
generator with random selections from the following pool of augmentations: horizontal
and vertical flips, image rotations of up to 20 degrees, image shear of up to 20%, image
zoom of up to 20%, and width and height shifts of up to 20%. The gray-scale augmented
mammograms were then stacked into 3 channels and histogram equalized by Contrasted
Limited Adaptive Histogram Equalization (CLAHE) with channel stratified clipping and
grid sizes as presented in Teare et al. (2017). We used the nominal grid sizes and clip limits
they presented and enhanced their approach by using it as an additional augmentation.
The CLAHE grid size, g, was augmented according to the following equation:

a ∈ U(−log2(k), log2(k)) | g(k) = k + a, (1)

where k is the nominal grid size. Similarly, the CLAHE clip limit, c, was augmented as
follows:

a ∈ U(−log2(l), log2(l)) | c(l) = l + a, (2)

where l is the nominal clip limit. After histogram equalization, a Gaussian noise (Nee-
lakantan et al., 2015) was applied to each color channel with a σ of 0.01, followed by image
standardization. When training MVMT , each of the four input mammograms were aug-
mented with a random set of augmentations drawn from the aforementioned pool of training
augmentations.

4. Results

MVMT experiments were conducted on the Tommy dataset. 2000 randomly selected pa-
tients were reserved for 10-fold cross-validation. The remaining patients were randomly
partitioned into a MT-CNN training set and a MVMT training set of 75% and 25%, re-
spectively. Maintaining a separate training set for MVMT provided additional samples that
the MT-CNN had never seen before to promote generalizability (Heitz et al., 2009; Sesmero
et al., 2007).

4.1. MT-CNN Performance

The CNN used in this work was InceptionResNetV2 (Szegedy et al., 2016). Details for
it’s selection are presented in Appendix A. It was instantiated with ImageNet weights
and refined using MT learning with the tasks shown in Table 1. The primary output
target, diagnosis, was one of either malignant or benign (normal) as determined by the
outcome of core biopsy. Five other auxiliary output targets were trained: sign, suspicion,
conspicuity, density, and age. The sign, suspicion, and conspicuity were categorical output
targets representing radiologist interpretation of the observed mammogram. Both patient
age and breast density were included as auxiliary tasks for improved regularization and
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for their known correlation with breast cancer (Lokate et al., 2013). Breast density was
not categorized by the traditional BI-RADS lexicon, but by a percentage density calculated
from a radiologist assessment on a 10-cm VAS (visual analogue scale) as described in Gilbert
et al. (2015). For this reason, breast density was not learned as a categorical problem but
as a regression, hence the normalization. Table 1 shows the classification and regression
performance of each task. The results shown are the average of 100 test-time augmentations
(TTA) per sample (Wang et al., 2018). See Appendix B for in depth training details.

Table 1: Multi-task performance for MT-CNN by task. * denotes regression targets, other-
wise assume categorical. The performance metric used is AUROC unless specified
as MAE (mean absolute error). For multi-class (non-binary) tasks, AUROC is
calculated one-vs-all. Breast density is a percentage density calculated from a ra-
diologist assessment on a 10-cm visual analog scale (VAS). Standard deviation is
provided along with metric.

Task Output Performance metric

Diagnosis malignant/benign 0.795± 0.015

Sign

none 0.720± 0.011
circumscribed 0.701± 0.036
spiculated 0.860± 0.036
micro-calcification 0.621± 0.045
distortion 0.771± 0.029
asymm. density 0.641± 0.028

Suspicion

normal 0.672± 0.033
benign 0.668± 0.035
probably benign 0.657± 0.023
suspicious 0.723± 0.018
malignant 0.835± 0.014

Conspicuity

not visible 0.685± 0.030
barely visible 0.748± 0.023
visible, not clear 0.575± 0.041
clearly visible 0.694± 0.017

Breast density* 0-100% VAS 13.96± 0.43 MAE(%)

Age* Age 40 to 73 5.97± 0.17 MAE(yrs)

By providing our networks with various “perspectives” of the same mammogram, TTA
mitigated the likelihood of misinterpreting a solitary sample and improved performance
(Ayhan and Berens, 2018; Wang et al., 2018). Area under the receiver operating charac-
teristic curve (AUROC) is reported for each categorical task; for regression targets mean
absolute error is reported.

7



Multi-view Multi-task Mammogram Diagnosis

Table 2: Source of gain for MT-CNN and MVMT (multi-view MT-CNN) shown in terms of
AUROC and AUPRC (± standard deviation) against the closest related works of
Geras et al. (2017) and Zhang et al. (2018) on the Tommy dataset. Mammogram
views (MV) is the number of input mammograms used per patient. MT is checked
when multi-tasking was used, otherwise assume single-task. TA denotes if test-
time augmentation was used.

Method MV MT TA AUROC AUPRC

Zhang et al. (2018) 1 0.656± 0.013 0.318± 0.031
MT-CNN 1 0.745± 0.020 0.365± 0.025
MT-CNN 1 X 0.752± 0.017 0.373± 0.024
MT-CNN 1 X 0.791± 0.019 0.435± 0.030
MT-CNN 1 X X 0.795 ± 0.015 0.456 ± 0.022

Geras et al. (2017) 4 X 0.721± 0.024 0.425± 0.034
MVMT 4 0.793± 0.027 0.541± 0.029
MVMT 4 X 0.824± 0.016 0.580± 0.028
MVMT 4 X 0.837± 0.017 0.619± 0.021
MVMT 4 X X 0.855 ± 0.021 0.646 ± 0.023

4.2. MVMT Performance

During testing the same augmentations used during training were applied and the final
predictions were averaged over 100 sample iterations. Table 2 shows the sources of gain for
MT-CNN and MVMT diagnostic performance. MV denotes the number of mammogram
views used as input, which can be either a single view (1) or all views (4). MT is checked
whenever multi-task learning was used. If MT is not checked, then the model was trained
to only predict diagnosis with no auxiliary prediction tasks. TTA is checked whenever
test-time augmentation was used (100 samples per patient). If TTA is not checked, then
the AUROC and area under the precision-recall curve (AUPRC) were calculated over one
sample prediction per patient. It is important to note that the reported AUROC values
of 0.855 are relatively high compared to the existing state-of-the-art given the difficulty
of the Tommy dataset. For comparison we show our proposed method in comparison to
the closest image-level CNN works of Geras et al. (2017) and Zhang et al. (2018) on the
Tommy dataset. We used the network and training methods provided in each respective
publication, and conducted additional experimentation of these methods and MT-CNN on
the public CBIS-DDSM dataset.

5. Discussion

Through discussion with radiologists, we have identified key requirements for MVMT ac-
ceptance and adoption in clinical practice, as well as the best options to integrate it into the
radiological workflow for mammogram reading. Below, we outline two possible use cases
of MVMT in practice. First, the MT output predictions of MVMT provide automated
annotation of radiological reports as in Fig. 2. These reports are both time consuming and
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Figure 2: Example illustration of MVMT in radiological practice: 1) automated radiological
reporting, and 2) MT outputs provide additional assessments for radiologists to
scrutinize.

costly to generate. By providing confidence estimates for each prediction to a radiologist,
the radiologist could choose to examine only the predicted radiological features that have a
high degree of uncertainty reducing the overall reading and report times. Second, MVMT
was designed to explain its predictions; it issues not only cancer predictions, but also ra-
diological assessments such as the conspicuity, suspicion, breast density, etc., in a similar
manner as a radiologist would make an assessment. This allows our approach to provide
radiologists more interpretable predictions and estimates, thereby enabling better human-
machine collaboration for mammography. MVMT provides interpretability not currently
offered in the machine learning for breast cancer literature. The additional information
shown in Fig. 2 can be used to debug and interpret MVMT predictions. Existing methods
in machine learning for mammography provide visualizations, but do not have the ability to
provide the multi-task annotations that MVMT is capable of. The multi-task outputs are
extracted imaging features that emulate radiological assessment and are what a radiologist
would naturally consider when examining multiple mammogram views. For example, breast
density asymmetries between left and right breast are often indicators of cancer (Scutt et al.,
2006). Details on our method for MVMT visualization are provided in Appendix C.

6. Related works

Networks that are trained with full images have been shown to improve diagnostic perfor-
mance, but require more training data (Bojarski et al., 2017). In comparison to ROI-based
methods, the training data does not require annotated locations that makes data acqui-
sition a lot simpler, cheaper and scalable. The work of Geras et al. (2017) presented the
richest mammography datasets used (with over 200,000 mammograms). Because of this,
they are one of the few researchers who attempt an image-level approach utilizing all four
mammogram views to predict the BI-RADS score. Our dataset is significantly smaller, but
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we draw motivation from their work of using all four mammogram views without relying
on any ROI. Results are compared to theirs for a benchmark comparison. Other related
image-level and multi-view networks were presented in Akselrod-Ballin et al. (2016), Bekker
et al. (2016), Carneiro et al. (2017, 2015), and Zhu and Xie (2016) and are shown in Table 3
for comparison.

MT learning has been successfully used on an ROI level in mammography (Kisilev
et al., 2016; Samala et al., 2017), but our work is the first to apply MT learning to image-
level mammogram classification. Bekker et al. (2016), Carneiro et al. (2015), Geras et al.
(2017), and Yi et al. (2017) used multiple views for improving classification performance,
however this work is the first to do so by concatenating the multi-task outputs of each
mammogram view. Many early investigative works have shown the success of transfer
learning using non-medical or natural images to classify mammograms (Argyriou et al.,
2006). Specifically, these publications have shown performance gains from using models
pre-trained with ImageNet weights, such as AlexNet, Inception or ResNet (Huynh et al.,
2016; Lévy and Jain, 2016; Jiang et al., 2017; Samala et al., 2016; Yi et al., 2017).

The closest related works are presented in Table 3, and although it is difficult to draw
a direct comparison to these works, we highlight the limitations of existing works in com-
parison to ours. MVMT has a reported AUROC of 0.855 and is higher than Geras et al.
(2017) at 0.753, who predicted BI-RADS (0, 1, and 2). The works of Carneiro et al. (2017),
Dhungel et al. (2014), and Zhu and Xie (2016) use the INbreast dataset to predict malig-
nancy and have comparable AUROC ranging from 0.8 to 0.86. However, because of their
small dataset size of 115 patients, the reported results could be subject to high variance.
Additionally, this dataset does not have the challenging overlapping tissues present in the
Tommy dataset.

Table 3: Comparison of related image-level and multi-view architectures. Bold represents
the proposed method. * denotes µ AUROC. MGV represents the number of mam-
mogram views used as input. ROI is Y if either ROI or segmentation masks were
needed for training or inference, otherwise N. MT is Y if multitask learning used,
otherwise N. MVMT is shown in bold.

Method Dataset Patients MGV ROI MT AUROC

Geras et al. (2017) private 201698 4 N N 0.753*
Akselrod-Ballin et al. (2016) private 300 1 N N 0.78 acc.
Carneiro et al. (2015) DDSM 287 2 Y N 0.91
Carneiro et al. (2017) INbreast 115 2 Y N 0.860
Bekker et al. (2016) DDSM 172 2 Y N 0.800
Dhungel et al. (2017) INbreast 115 2 Y N 0.800
MVMT Tommy 7060 4 N Y 0.855
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6.1. Conclusion

We introduced a new machine learning classifier for breast cancer, called MVMT, that
utilized MT learning to improve diagnostic accuracy on full image mammography in com-
parison to the state-of-the-art. We demonstrated on the challenging Tommy dataset how
MT learning improved single image diagnostic accuracy in comparison to non-MT learn-
ing. Additionally, we demonstrated that concatenating images over the MT outputs led to
a more refined feature representation that also resulted in increased multi-view accuracy.
Lastly, we provided a brief example of how MT outputs can be leveraged for autonomous ra-
diological report generation and improving machine learning interpretability. This method
shows great promise for image-level diagnosis and with enough data may eventually surpass
ROI methods.
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João Manuel R. S. Tavares, Vasileios Belagiannis, João Paulo Papa, Jacinto C. Nasci-
mento, Marco Loog, Zhi Lu, Jaime S. Cardoso, and Julien Cornebise, editors, Deep
Learning and Data Labeling for Medical Applications, pages 121–129, Cham, Sept 2016.
Springer International Publishing. ISBN 978-3-319-46976-8.

Thijs Kooi and Nico Karssemeijer. Classifying symmetrical differences and temporal change
in mammography using deep neural networks. CoRR, abs/1703.07715, 2017.

Thijs Kooi, Geert Litjens, Bram van Ginneken, Albert Gubern-Mrida, Clara I. Snchez, Ritse
Mann, Ard den Heeten, and Nico Karssemeijer. Large scale deep learning for computer
aided detection of mammographic lesions. Med Image Anal., 35:303–312, 2016.
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Appendix A. Candidate CNN selection

Transfer learning utilizing pretrained models on non-medical datasets has been shown to
have competitive, and sometimes state-of-the-art, performance in many medical imaging
and mammography tasks (Carneiro et al., 2017, 2015; Habibzadeh Motlagh et al., 2018;
Huynh et al., 2016; Jiao et al., 2016; Khosravi et al., 2018; Lévy and Jain, 2016). Recent
deep learning toolkits, such as Keras, allow practitioners to fine-tune and utilize many
of the successful ImageNet models with ease. Because of this, we chose to evaluate and
select the best CNN from the following ImageNet algorithms: ResNet50, VGG16, VGG19,
InceptionV3, InceptionResNetV2 and Xception. We judged model performance on both
ROI and full-images from the Curated Breast Imaging Subset of the Digital Database of
Screening Mammography (CBIS-DDSM) (Heath et al., 2001). The DDSM is a database
of 2,620 scanned film mammography studies. It contains normal, benign, and malignant
cases with verified pathology information. The CBIS-DDSM collection includes a subset of
the DDSM data selected and curated by a trained mammography reader. We chose this
database due to the large number of related works using it, particularly with ROIs (Becker
et al., 2016; Carneiro et al., 2017, 2015; Dhungel et al., 2015; Jiao et al., 2016; Lévy and
Jain, 2016; Shen, 2017; Zhu and Xie, 2016).

We emulated the methodology presented in Shen (2017), a finalist in the 2016 DREAM
mammography challenge, who generated a full-field mammogram classifier by first pre-
training on ROIs from CBIS-DDSM. In the first step, we extracted patches from full-
field mammograms without down-scaling and saved the images as 224 x 224 8-bit PNG
files. Before saving patches we also standardized (0 µ, 1 σ) the entire set of patches by
performing pixel-wise subtraction of the dataset mean and dividing by the dataset standard
deviation. For every ROI patch saved we generated a “background” image, which was a
uniformly random sampled region on the opposite (vertical and horizontal) half of the image.
For training and testing we used an approximate 90-10 split, where 4000 total patches
(including backgrounds) were used to train our network. We used an approximate 1:1 ratio
for masses/calcification to background images. To deal with an extremely small training-set
size and mitigating over-fitting, we applied random augmentation to each training image
with the following specification: rotation within±25 degrees, shear up to 20 degrees counter-
clockwise, horizontal flips, vertical flips, and zoom within ±10%. We used a batch size of
16 and a cross entropy loss function. An iterative multi-step approach was used in training
each CNN. The Adam optimizer with a learning rate of 10−3 was used for training the top
layer, a learning rate of 10−4 for the top 50% of the network, and a learning rate of 10−5

16

http://arxiv.org/abs/1311.2901


Multi-view Multi-task Mammogram Diagnosis

for fine tuning the rest of the network as described in Lévy and Jain (2016), Shen (2017),
and Yi et al. (2017). For full-image experimentation, we used the same preprocessing,
network hyperparameters and architecture used for ROIs, except we did not randomly
sample background patches and also resized mammograms to 320 x 416 to preserve the
aspect ratio.

Table 4 shows a comparison of candidate CNN architectures used to evaluate and test
our approach. We evaluated 3 different class partitions for ROI images. In the 2-class ex-
periment, ROI were classified as either benign or malignant. In the 3-class experiment, ROI
were classified as either background, benign or malignant. And in the 5-class experiment,
ROI were classified as one of background, benign calcification, benign mass, malignant cal-
cification or malignant mass. Each of the neural networks were initialized with pre-trained
ImageNet weights, and had the top-layer replaced by a global average pooling layer followed
by a new fully-connected dense classifier. A single dense layer of 1024 neurons was selected
to bias model fitting into the convolutional layers. Hyper-parameter tuning was forgone,
since the goal of this experiment was just a ranking system for CNN selection. Inception-
ResNetV2 performed the best in each classification task and metric, other than image-level
AUPRC.

Table 5 shows the single mammogram classification performance of MT-CNN to the
closely related works of Geras et al. (2017) and Zhang et al. (2018) on the public DDSM
dataset. Each model used the same image preprocessing and augmentation presented in this
section, and was trained using their published training hyperparameters and architecture.
Slight modification of the network used in Geras et al. (2017) was required to accommodate
a single mammogram rather than all four mammogram views. This was done by simply
providing all mammograms into the first CNN they used and keeping the same subsequent
layers unmodified.

Table 4: A trade-study of candidate CNN architectures on public CBIS-DDSM dataset to
select the best CNN from available pre-trained ImageNet models to use as MT-
CNN. For the ROI trade study, the reported values are the AUROC for 2-class,
3-class and 5-class stratifications. For full-images the AUROC and AUPRC are
reported. The highest values for each experiment are in bold.

ROI AUROC Full-image

Model 2-class 3-class 5-class AUROC AUPRC

ResNet50 0.740 0.734 0.706 0.607 0.488
VGG16 0.762 0.741 0.679 0.538 0.432
VGG19 0.783 0.739 0.665 0.542 0.402
InceptionV3 0.800 0.731 0.712 0.640 0.541
InceptionResNetV2 0.842 0.841 0.844 0.652 0.493
Xception 0.767 0.706 0.741 0.565 0.434
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Table 5: Comparison of models on public dataset DDSM. For consistency all models are
shown using TTA. Each model is trained using their published hyperparameters.

Model AUROC AUPRC

Geras et al. (2017) 0.490 0.408
Zhang et al. (2018) 0.531 0.423
MT-CNN 0.652 0.493

Appendix B. Training details

To bias diagnosis as the primary objective, loss weighting was adjusted according to the
auxiliary output losses, such that the loss weight for diagnosis was greater than or equal
to the sum of all other auxiliary output losses. Because cross-entropy loss performance
deteriorates under scenarios of large class imbalance, this was mitigated by utilizing a focal
loss function that is characterized by decreasing the penalty for well-classified examples (Lin
et al., 2017). For a binary classification problem this is formally described as follows:

FL(pt) = −αt(1− pt)γlog(pt) (3)

where γ ≥ 0 is a focus tuning parameter, αt is the inverse class frequency tuning parameter,
and pt is defined as follows:

pt =

{
p if y = 1

1− p otherwise.
(4)

In this experiment a focal loss was used for all categorical output targets with parameters α
and γ initialized to 2. Focal loss was compared to cross-entropy loss as a sanity check and
performance improvements were observed when using focal loss in regards to both model
training time and predictive accuracy. For age and density regression targets, mean squared
error (MSE) loss was used.

Because MT-CNN was initialized with ImageNet weights, lower-level CNN features were
preserved by using an iterative and stratified training regime motivated by the work of Shen
(2017). First, the fully-connected layer was trained for 1 epoch with the Adam optimizer
and a learning rate of 10−3. Then we cycled between training the top-most dense layers
and the convolutional layers using a learning rate of 10−4 for 5 epochs each, followed by
10−5 for 10 epochs each. A batch size of 16 was used to train MT-CNN and was the largest
that fit within GPU memory constraints. To bias MT-CNN to have the best diagnostic
performance, at the end of each training epoch the model with the best AUROC for diagnosis
was monitored and saved.

Due to the similarity in network architecture, MVMT was trained with the same training
parameters, augmentation settings, preprocessing steps and loss functions mentioned when
training MT-CNN. Due to the increase in network size and complexity, a batch size of 4
was required to fit within the limits of GPU memory. This required manually balancing
the training classes, such that an equal number of positive and negative samples were seen
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during each batch. Consider Fig. 1, only the dense layers after concatenation were trained
and all other layers were preserved and not updated during back-propagation. Again, the
Adam optimizer was used with learning rate initialized to 1e−4 for 5 epochs then 1e−5 for 15
epochs. During training all the previously mentioned augmentations were randomly applied
to each input mammogram uniquely to provide the maximum amount of input variation.

All models have been generated, trained, validated and tested using Python, Keras, and
TensorFlow on an Ubuntu Linux 16.04 OS and accelerated using two Nvidia GTX 1080 Ti
GPUs with 11GB of memory each.

Appendix C. Visualizations

Visualizing the processing of a CNN is critical for understanding and interpreting model
effectiveness and fidelity. Although several methods exist for visualization in CNNs (Ma-
hendran and Vedaldi, 2015; Yosinski et al., 2015; Zeiler and Fergus, 2013), most require
large data sets and network retraining. Instead, the method proposed in Geras et al. (2017)
was used, which did not require network retraining and worked by simply examining the
network’s output sensitivity to perturbations in each input pixel. The premise was that
a higher output variance will be observed when an “important” input pixel is perturbed.
Using this method, Fig. 3 shows an example on three positive patients. Patient A was diag-
nosed correctly by both the radiologist and MVMT. For this patient, all of the predictions
by MVMT agreed with the outcome except for the suspicion of the CC view, which MVMT
deemed normal instead of suspicious. Patient B was diagnosed correctly by the radiologist
but not MVMT. Patient C was diagnosed correctly by MVMT but not the radiologist. For
this patient, the malignant lesion correctly identified by MVMT was also discovered by the
radiologist, but was misdiagnosed as benign. Patient B has many non-breast pixels high-
lighted which agrees with the negative (normal) predictions of MVMT. For Patients A and
C, MVMT recognized at least one “well-defined” region in either view and did not have any
visible background pixels highlighted.
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Patient A 
Radiologist & Classifier correct 

Patient B 
Radiologist correct & Classifier wrong 

Patient C 
Radiologist wrong & Classifier correct 

Density: 39 (22) 
Susp: malignant (suspicious) 
Sign: spic. mass (spic. mass) 
Cons: visible (visible) 

Density: 43 (22) 
Susp: normal (suspicious) 
Sign: spic. mass (spic. mass) 
Cons: visible (visible) 

Density: 49 (40) 
Susp: normal (prob. benign) 
Sign: none (micro-calc) 
Cons: not visible (barely) 

Density: 49 (40) 
Susp: normal (suspicious) 
Sign: none (micro-calc) 
Cons: not visible (visible) 

Density: 32 (14) 
Susp: malignant (benign) 
Sign:  ASD (ASD) 
Cons: visible (visible) 

Density: 25 (14) 
Susp: malignant (benign) 
Sign: ASD (ASD) 
Cons: visible (visible) 

Figure 3: Example visualization of MVMT on three positive (malignant) patients. Pa-
tient A was diagnosed correctly by both the radiologist and MVMT; Patient B
was diagnosed correctly by the radiologist but not MVMT; and Patient C was
diagnosed correctly by MVMT, but not the radiologist. For each patient, the
malignant breast is shown with MLO view on the left and CC on the right. The
predicted density, suspicion, sign and conspicuity are shown, and ASD is asym-
metrical density. The actual radiological annotations are in parenthesis.
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