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Abstract

The automatic generation of radiology reports given medical radiographs has significant

potential to operationally and improve clinical patient care. A number of prior works have

focused on this problem, employing advanced methods from computer vision and natu-

ral language generation to produce readable reports. However, these works often fail to

account for the particular nuances of the radiology domain, and, in particular, the crit-

ical importance of clinical accuracy in the resulting generated reports. In this work, we

present a domain-aware automatic chest X-ray radiology report generation system which

first predicts what topics will be discussed in the report, then conditionally generates sen-

tences corresponding to these topics. The resulting system is fine-tuned using reinforcement

learning, considering both readability and clinical accuracy, as assessed by the proposed

Clinically Coherent Reward. We verify this system on two datasets, Open-I and MIMIC-

CXR, and demonstrate that our model o↵ers marked improvements on both language

generation metrics and CheXpert assessed accuracy over a variety of competitive baselines.

1. Introduction

A critical task in radiology practice is the generation of a free-text description, or report,
based on a clinical radiograph (e.g., a chest X-ray). Providing automated support for this

task has the potential to ease clinical workflows and improve both the quality and stan-

dardization of care. However, this process poses significant technical challenges. Many

traditional image captioning approaches are designed to produce far shorter and less com-

plex pieces of text than radiology reports. Further, these approaches do not capitalize on the

highly templated nature of radiology reports. Additionally, generic natural language gen-
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eration (NLG) methods prioritize descriptive accuracy only as a byproduct of readability,

whereas providing an accurate clinical description of the radiograph is the first priority of

the report. Prior works in this domain have partially addressed these issues, but significant

gaps remain towards producing high-quality reports with maximal clinical e�cacy.

In this work, we take steps to address these gaps through our novel automatic chest

X-ray radiology report generation system. Our model hierarchically generates a sequence

of unconstrained topics, using each topic to generate a sentence for the final generated

report. In this way, we capitalize on the often-templated nature of radiology reports while

simultaneously o↵ering the system su�cient freedom to generate diverse, free-form reports.

The system is finally tuned via reinforcement learning to optimize readability (via the CIDEr

score) as well as clinical accuracy (via the concordance of CheXpert (Irvin et al., 2019)

disease state labels between the ground truth and generated reports). We test this system

on the MIMIC-CXR (Johnson et al., 2019) dataset, which is the largest paired image-report

dataset presently available, and demonstrate that our model o↵ers improvements on both

NLG evaluation metrics (BLEU (Papineni et al., 2002), CIDEr (Vedantam et al., 2015),

and ROGUE (Lin, 2004)) and clinical e�cacy metrics (CheXpert concordance) over several

compelling baseline models, including a re-implementation of TieNet (Wang et al., 2018),

simpler neural baselines, and a retrieval-based baseline.

Clinical Relevance This work focuses on generating a clinically useful radiology report

from a chest X-ray image. This task has been explored multiple times, but directly trans-

planting natural language generation techniques onto this task only guarantees the reports

to look real rather than to predict right. A more immediate focus for the report generation

task is thus to produce accurate disease profiles to power downstream tasks such as diagno-

sis and care providing. Our goal is then minding the language fluency while also increasing

the clinical e�cacy of the generated reports.

Technical Significance We employ a hierarchical convolutional-recurrent neural network

as the backbone for our proposed method. Reinforcement learning (RL) on a combined

objective of both language fluency metrics and the proposed Clinically Coherent Reward

(CCR) ensures we obtain a quality model on more correctly describing disease states. Our

method aims to numerically align the disease labels of our generated report, as produced

by a natural language labeler, with the labels from the ground truth reports. The reward

function, though non-di↵erentiable, can be optimized through policy gradient learning as

promised by RL.

2. Background & Related Work

2.1. Radiology

333d0a1e-6b85647a-54e61853-403c774d-528aadc7

Findings: 
There is no focal consolidation, effusion or 
pneumothorax. The cardiomediastinal
silhouette is normal. There has been interval 
resolution of pulmonary vascular congestion 
since DATE.
Impression: 
No pneumonia or pulmonary vascular 
congestion. Telephone notification to dr. 
NAME at TIME on DATE per request

Figure 1: A chest X-ray and its associated

report written by a radiologist.

Radiology Practice Diagnostic radiology is

the medical field of creating and evaluating ra-

diological images (radiographs) of patients for di-

agnostics. Radiologists are trained to simultane-

ously identify various radiological findings (e.g.,

diseases), according to the details of the radio-

graph and the patient’s clinical history, then sum-

marize these findings and their overall impression

in reports for clinical communication (Kahn Jr
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Dataset Source Institution Disease Labeling # Images # Reports # Patients

Open-I
Indiana Network for
Patient Care

Expert 8,121 3,996 3,996

Chest-Xray8
National Institutes of
Health

Automatic
(DNorm + MetaMap)

108,948 0 32,717

CheXpert Stanford Hospital
Automatic
(CheXpert labeler)

224,316 0 65,240

PadChest
Hospital Universitario
de San Juan

Expert + Automatic
(Neural network)

160,868 206,222 67,625

MIMIC-CXR
Beth Israel Deacones
Medical Center

Automatic
(CheXpert labeler)

473,057 206,563 63,478

Table 1: A description of each available chest X-ray datasets. Open-I (Demner-Fushman et al.,

2015), Chest-XRay8 (Wang et al., 2017) which utilized DNorm (Leaman et al., 2015) and

MetaMap (Aronson and Lang, 2010), CheXpert (Irvin et al., 2019), PadChest (Bustos

et al., 2019), and MIMIC-CXR (Johnson et al., 2019).

et al., 2009; Schwartz et al., 2011). A report typically consists of sections such as his-
tory, examination reason, findings, and impressions. As shown in Figure 1, the findings
section contains a sequence of positive, negative, or uncertain mentions of either disease

observations or instruments including their detailed location and severity. The impres-
sion section, by contrast, summarizes diagnoses considering all report sections above and

previous studies on the patient.

Correctly identifying all abnormalities is a challenging task due to high variation, atyp-

ical cases, and the information overload inherent to some imaging modalities, such as com-

puterized tomography (CT) scans (Rubin, 2015). This presents a strong intervention surface

for machine learning techniques to help radiologists correctly identify the critical findings

from a radiograph. The canonical way to communicate such findings in current practice

would be through the free-text report, which could either be used as a “draft” report for

the radiologists to extend or be presented to the physician requesting a radiological study

directly (Schwartz et al., 2011).

AI on Radiology Data In recent years, several chest radiograph datasets, totalling al-

most a million X-ray images, have been made publicly available. A summary of these

datasets is available in Table 1. Learning e↵ective computational models through leverag-

ing the information in medical images and free-text reports is an emerging field. Such a

combination of image and textual data help further improve the model performance in both

image annotation and automatic report generation (Litjens et al., 2017).

Schlegl et al. (2015) first proposed a weakly supervised learning approach to utilize

semantic descriptions in reports as labels for better classifying the tissue patterns in optical

coherence tomography (OCT) imaging. In the field of radiology, Shin et al. (2016) proposed

a convolutional and recurrent network framework that jointly trained from image and text

to annotate disease, anatomy, and severity in the chest X-ray images. Similarly, Moradi

et al. (2018) jointly processed image and text signals to produce regions of interest over

chest X-ray images. Rubin et al. (2018) trained a convolutional network to predict common

thoracic diseases given chest X-ray images. Shin et al. (2015), Wang et al. (2016), and

Wang et al. (2017) mined radiological reports to create disease and symptom concepts

as labels. They first used Latent Dirichlet Allocation (LDA) to identify the topics for

clustering, then applied the disease detection tools such as DNorm, MetaMap, and several
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other Natural Language Processing (NLP) tools for downstream chest X-ray classification

using a convolutional neural network. They also released the label set along with the image

data.

Later on, Wang et al. (2018) used the same Chest X-ray dataset to further improve the

performance of disease classification and report generation from an image. For report gener-

ation, Jing et al. (2017) built a multi-task learning framework, which includes a co-attention

mechanism module, and a hierarchical long short term memory (LSTM) module, for radi-

ological image annotation and report paragraph generation. Li et al. (2018) proposed a re-

inforcement learning-based Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent)

to learn a report generator that can decide whether to retrieve a template or generate a

new sentence. Alternatively, Gale et al. (2018) generated interpretable hip fracture X-ray

reports by identifying image features and filling text templates.

Finally, Hsu et al. (2018) trained the radiological image and report joint representation

through unsupervised alignment of cross-modal embedding spaces for information retrieval.

2.2. Language Generation

Language generation (LG) is a staple of NLP research. LG comes up in the context of neural

machine translation, summarization, question answering, image captioning, and more. In

all these tasks, the challenges of generating discrete sequences that are realistic, meaningful,

and linguistically correct must be met, and the field has devised a number of methods to

surmount them. For many years, this was done through ngram-based (Huang et al., 1993)

or retrieval-based (Gupta and Lehal, 2010) approaches.

Within the last few years, many have explored the very impressive results of deep learn-

ing for text generation. Graves (2013) outlined best practices for RNN-based sequence

generation. The following year, Sutskever et al. (2014) introduced the sequence-to-sequence
paradigm for machine translation and beyond. However, Wiseman et al. (2017) demon-

strated that while RNN-generated texts are often fluent, they have typically failed to reach

human-level quality.

Reinforcement learning recently also come into play due to its capability to optimize

for indirect target rewards, even if the targets themselves are often non-di↵erentiable. Li

et al. (2016) used a crafted combination of human heuristics as the reward while Bahdanau

et al. (2016) incorporated language fluency metrics. They were among the first to apply

such techniques to neural language generation, but to date, training with log-likelihood

maximization (Xie, 2017) has been the main working horse. Alternatively, Rajeswar et al.

(2017) and Fedus et al. (2018) have tried using Generative Adversarial Neural Networks

(GANs) for text generation. However, Caccia et al. (2018) observed problems with training

GANs and show that to date, they are unable to beat canonical sequence decoder methods.

Image Captioning We will also highlight some specific areas of exploration in image

captioning, a specific kind of language generation which is conditioned on an image input.

The canonical example of this task is realized in the Microsoft COCO (Lin et al., 2014)

dataset, which presents a series of images, each annotated with five human-written captions

describing the image. The task, then, is to use the image as input to generate a readable,

accurate, and linguistically correct caption.

This task has received significant attention with the success of Show and Tell (Vinyals
et al., 2015) and its followup Show, Attend, and Tell (Xu et al., 2015). Due to the nature

of the COCO competition, other works quickly emerged showing strong results: Yao et al.
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NLG Reward

Medical
Image

Image
Encoder

Image Embedding
heart size is normal

<bos> heart size is

Sentence 
Decoder Word Decoder

pooling

Attention
Map

heart size is normal. 
there is no focal consolidation, 
effusion or pneumothorax. 
the lungs are clear. 
there is no acute osseous 
abnormalities.

Generated Report

Reinforcement Learning

Ours (NLG)

Ours (CCR)

Ours (full)

Clinical Coherent Reward

Figure 2: The model for our proposed Clinically Coherent Reward . Images are first en-

coded into image embedding maps, and a sentence decoder takes the pooled embedding to

recurrently generate topics for sentences. The word decoder then generates the sequence

from the topic with attention on the original images. NLG reward, clinically coherent

reward, or combined, can then be applied as the reward for reinforcement policy learning.

(2017) used boosting methods, Lu et al. (2017) employed adaptive attention, and Rennie

et al. (2017) introduced reinforcement learning as a method for fine-tuning generated text.

Devlin et al. (2015) performed surprisingly well using a K-nearest neighbor method. They

observed that since most of the true captions were simple, one-sentence scene descriptions,

there was significant redundancy in the dataset.

2.3. Radiology Report Generation

Multiple recent works have explored the task of radiology report generation. Zhang et al.

(2018) used a combination of extractive and abstractive techniques to summarize a radiology

report’s findings to generate an impression section. Due to limited text training data, Han

et al. (2018) relied on weak supervision for a Recurrent-GAN and template-based framework

for MRI report generation. Gale et al. (2018) uses an RNN to generate template-generated

text descriptions of pelvic X-rays.

More comparable to this work, Wang et al. (2018) used a CNN-RNN architecture with

attention to generate reports that describe chest X-rays based on sequence decoder losses

on the generated report. Li et al. (2018) generated chest X-ray reports using reinforcement

learning to tune a hierarchical decoder that chooses (for each sentence) whether to use an

existing template or to generate a new sentence, optimizing the language fluency metrics.

3. Methods

In this work we opt to focus on generating the findings section as it is the most direct anno-

tation from the radiological images. First, we introduce the hierarchical generation strategy

with a CNN-RNN-RNN architecture, and later we propose novel improvements that render

the generated reports more clinically aligned with the true reports. Full implementation

details, including layer sizes, training details, etc., are presented in the Appendix, Section A.

3.1. Hierarchical Generation via CNN-RNN-RNN

As illustrated in Figure 2, we aim to generate a report as a sequence of sentences Z =

(z1, . . . , zM ), where M is the number of sentences in a report. Each sentence consists of a
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sequence of words zi = (zi1, . . . , ziNi) with words from a vocabulary zij 2 V, where Ni is

the number of words in sentence i.
The image is fed through the image encoder CNN to obtain a visual feature map. The

feature is then taken by the sentence decoder RNN to recurrently generate vectors that

represent the topic for each sentence. With the visual feature map and the topic vector, a

word decoder RNN tries to generate a sequence of words and attention maps of the visual

features. This hierarchical approach is in line with Krause et al. (2017) where they generate

descriptive paragraphs for an image.

Image encoder CNN The input image I is passed through a CNN head to obtain

the last layer before global pooling, and the feature is then projected to an embedding

of dimensionality d, which is identical to the word embedding dimension. The resulting

map V = {vk}Kk=1 of spatial image features will be descriptive features for di↵erent spatial
locations of an image. A mean visual feature is obtained by averaging all local visual

features

¯v =

1
K

P
k vk.

Sentence decoder RNN Given the mean visual feature

¯v, we adopt Long-Short Term

Memory (LSTM) and model the hidden state as hi,mi = LSTM(

¯v;hi�1,mi�1), where
hi�1 and mi�1 are the hidden state vector and the memory vector for the previous sentence

(i� 1) respectively. From the hidden state hi, we further generate two components, namely

the topic vector ⌧ i and the stop signal ui for the sentence, as ⌧ i = ReLU

�
W>

⌧ hi + b⌧
�

and ui = �
�
w>

u hi + bu
�
, where W’s and b’s are trainable parameters, and � is the sigmoid

function. The stop signal acts as as the end-of-sentence token. When u > 0.5, it indicates
the sentence decoder RNN should stop generating the next sentence.

Word decoder RNN After we decode the sentence topics, we can start to decode the

words given the topic vector ⌧ i. For simplicity, we drop the subscript i as this process

applies to all sentences. We adopted the visual sentinel (Lu et al., 2017) that modulates the

feature map V with a sentinel vector. The hidden states and outputs are again modeled

with LSTM, generating the posterior probability pj over the vocabulary with (1) the mean

visual feature

¯v, (2) the topic vector ⌧ , and (3) the embedding of the previously generated

word ej�1 = Ezj�1 , where E 2 Rd⇥|V|
is the trainable word embedding matrix. At training

time, the next word is sampled from the probability zj ⇠ p(z | ·) = (pj)z, or the z-th
element of pj .

This formulation enables the model to look at di↵erent parts on the image while having

the option of “looking away” at a sentinel vector. Note that this hierarchical encoder-

decoder CNN-RNN-RNN architecture is fully di↵erentiable.

3.2. Reinforcement Learning for Readability

As Rennie et al. (2017) showed, the automatic NLG metric CIDEr (Vedantam et al., 2015) is

superior to other metrics such as BLEU (Papineni et al., 2002), and ROUGE (Lin, 2004). We

consider the case of self-critical sequence training (SCST) (Rennie et al., 2017) which utilizes

REINFORCE (Williams, 1992) algorithm, and minimize the negative expected reward as a

function of the network parameters ✓, as LNLG(✓) = �E(u,Z)⇠p✓(u,Z)[rNLG(Z,Z⇤
)� rNLG(Zg,Z⇤

)],
where p✓ is the distribution over output spaces, rNLG is a metric evaluation function acting

as a reward function that takes a sampled report Z and a ground truth report Z⇤
. The

baseline in SCST has been replaced with the reward obtained with testing time greedily

decoded report Zg
.
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3.3. Novel Reward for Clinically Accurate Reinforcement Learning

One major downside with the approach outlined so far, unfortunately, is that in the clinical

context, aiming for a good automatic metric such as CIDEr is not enough to correctly char-

acterize the disease states. Negative judgments on diseases are critical components of the

reports, by which radiologist indicates that the patient might not have those diseases that

were of concern and among the reasons for the examination. Li et al. (2018) indicated that

a good portion of chest X-ray reports are heavily templated in patterns such as no pneu-
mothorax or pleural e↵usion; the lungs are clear ; or no focal consolidation, pneumothorax
or large pleural e↵usion. These patterns also suggest that most patients are disease-free,

hence the signal of positive mentions of the disease will be sparse.

Simply optimizing the automatic LG metrics may misguide the model to mention only

the disease names as opposed to correctly positively/negatively describe the disease states.

For example, if the ground truth report reads no pleural e↵usion, the models would prefer

the text mild pleural e↵usion over unrelated text or even an empty string, which means

intelligent optimization systems could game these metrics at the expense of clinical accuracy.

We hence propose using a Clinically Coherent Reward (CCR), which utilizes a rule-

based disease mention annotator , CheXpert (Irvin et al., 2019), to optimize our generated

report for clinical e�cacy directly. CheXpert performs classification on 12 types of thoracic

diseases or X-ray related diagnoses. The mentions for support devices are also labeled.

For each label type t, there are four possible outcomes for the labeling: (1) positive, (2)

negative, (3) uncertain, or (4) absent mention; or, lt(Z) 2 {p, n, u, a}. This outcome can be

used to model the positive/negative disease state st 2 {+,�} as st ⇠ ps|l(·|lt(Z)), the value

of which will be discussed further later. CCR is then defined, dropping the subscripts for

distribution for convenience, as

rCCR(Z,Z
⇤
) =

X

t

rCCR,t(Z,Z
⇤
) ⌘

X

t

X

s2{+,�}

p(s|lt(Z)) · p(s|lt(Z⇤
)), (1)

aiming to maximize the correlation of distribution over disease states between the generated

text Z and the ground truth text Z⇤
. Unfortunately, as the true diagnostic state s of novel

reports is unknown, we need to make several assumptions regarding the performance of the

rule based labeler, allowing us to infer the necessary conditional probabilities p(s|l).
To motivate these assumptions, first note that these diseases are universally rare, or,

p(+) ⌧ p(�). Presuming the rule based labeler has any discriminative power, we can

thus conclude that if the labeler assigns a negative or an absent label (l� is one of {n, a}),
p(+|l�) < p(+)⌧ p(�) < p(�|l�). For su�ciently rare conditions, a reasonable assumption

and simplification is to therefore take p(+|l�) ⇡ 0 and p(�|l�) ⇡ 1. We further assume

that the rule based labeler has a very high precision, and thus p(+|p) ⇡ 1. However, given

an uncertain mention u, the desired output probabilities are di�cult to assess. As such, we

define a reward-specific hyperparameter �
u

⌘ p(+|u), which in this work we take to be 0.5.
All of these assumptions could be easily adjusted, but they perform well for us here.

We also wish to use a baseline for the reward rCCR. Instead of using a single exponential

moving average (EMA) over the total reward, we apply EMA separately to each term as

LCCR(✓) = �E(u,Z)⇠p✓(u,Z)

"
X

t

rCCR,t(Z,Z
⇤
)� r̄CCR,t

#
, (2)

where r̄CCR,t is an EMA over rCCR,t updated as r̄CCR,t  �r̄CCR,t + (1� �)rCCR,t(Z,Z⇤
).

7



Clinically Accurate Chest X-Ray Report Generation

We wish to pursue both semantic alignment and clinical coherence with the ground truth

report, and thus we combine the above rewards for reinforcement learning on our neural

network in a weighted fashion. Specifically, L(✓) = LNLG(✓) + �LCCR(✓), where � controls

the relative importance.

Hence the derivative of the combined loss with respect to ✓ is thus

r✓L(✓) = �E(u,Z)⇠p✓(u,Z)

2

4
[rNLG(Z,Z

⇤
) + �rCCR(Z,Z

⇤
)]r✓

X

i

0

@
log ui +

X

j

log (pij)zij

1

A

3

5, (3)

where pij is the probability over vocabulary. We can approximate the above gradient with

Monte-Carlo samples from p✓ and average gradients across training examples in the batch.

4. Experiments

4.1. Datasets

In this work, we use two chest X-ray/report datasets: MIMIC-CXR (Johnson et al., 2019)

and Open-I (Demner-Fushman et al., 2015).

MIMIC-CXR is the largest radiology dataset to date and consists of 473, 057 chest X-ray

images and 206, 563 reports from 63, 478 patients

1
. Among these images, 240, 780 are of

anteroposterior (AP), 101, 379 are of posteroanterior (PA), and 116, 023 are of lateral (LL)

views. Furthermore, we eliminate duplicated radiograph images with adjusted brightness

level or contrast as they are commonly produced for clinical needs, after which we are left

with 327, 281 images and 141, 783 reports. The radiological reports are parsed into sections,

among which we extract the findings section. We then apply tokenization and keep tokens

with at least 5 occurrences in the corpus, resulting in 5, 571 tokens in total.

Open-I is a public radiography dataset collected by Indiana University with 7, 471 chest

X-ray images and 3, 955 reports. The reports are in XML format and include pre-parsed

sections. We then exclude the entries without the findings section and are left with 6, 471
images and 3, 336 reports. Tokenization is done similarly, but due to the relatively small

size of the corpus, we keep tokens with 3 or more occurrences, ending up with 948 tokens.

Both datasets are partitioned by patients into a train/validation/test ratio of 7/1/2 so

that there is no patient overlap between sets. Words that are excluded were replaced by an

“unknown” token, and the word embeddings are pretrained separately for each dataset.

4.2. Evaluation Metrics

To compare with other models including prior state-of-the-art and baselines, we adopt

several di↵erent metrics that focus on di↵erent aspects ranging from a natural language

perspective to clinical adequacy.

Automatic LG metrics such as CIDEr-D (Vedantam et al., 2015), ROUGE-L (Lin, 2004),

and BLEU (Papineni et al., 2002) measure the statistical relation between two text se-

quences. One concern with such statistical measures is that with a limited scope from the

n-grams (n up to 4) we are unable to capture disease states, as negations are common in the

medical corpus and oftentimes the negation cue words and disease words can be far apart in

a sentence. As such, we also include medical abnormality detection as a metric. Specifically,

we compare the CheXpert (Irvin et al., 2019) labeled annotations between the generated

1. This work used an alpha version of MIMIC-CXR instead of the publicly released version where the
images are more standardized and the split into o�cial train/test sets.
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report and the ground truth report on 14 di↵erent categories related to thoracic diseases

and support devices

2
. We evaluate the accuracy, precision, and recall for all models.

4.3. Models

We compare our methods with state-of-the-art image captioning and medical report gen-

eration models as well as some simple baseline models: (a) 1-NN, in which we query in

the image embedding space for the closest neighbor in the train set using a test image.

The corresponding report of the neighbor is used as the output for this test image; (b)

Show and Tell (S&T) (Vinyals et al., 2015); (c) Show, Attend, and Tell (SA&T) (Xu et al.,

2015); and (d) TieNet (Wang et al., 2018). To allow comparable results in all models, we

slightly modify previous models to also accept the view position embedding which encodes

AP/PA/LL as a one-hot vector to utilize the extra information available at image acquisi-

tion. This includes Show and Tell, Show, Attend, and Tell, and our re-implementation of

TieNet, which is detailed in Appendix B because the authors did not release their code.

We observed our model to sometimes repeat the findings multiple times. We apply

post-hoc processing where we remove exact duplicate sentences in the generated reports.

This proves to improve the readability but interestingly slightly degrades NLG metrics.

Additionally, we perform several ablation studies to inspect the contribution of various

components of our model. In particular, we assess

Ours (NLG) Use rNLG only for reinforced learning, as often is the case with the prior

state-of-the-art.

Ours (CCR) Use rCCR only and do not care about aligning the natural language metrics.

Ours (full) Considers both rewards as formulated in Section 3.3.

In order to provide some context to the metric scores, we also trained an unsupervised

RNN language model which generates free text without conditioning on input radiograph

images, which we denote as Noise-RNN. All recurrent models, including prior works and

our models, use beam search with a beam size of 4.

5. Results & Discussion

5.1. Quantitative Results

Natural Language Metrics In Table 2 we show the automatic evaluation scores for

baseline models, prior works, and variants of our models on the aforementioned test sets.

Ours (NLG), that solely optimizes CIDEr score, achieves superior performance in terms

of natural language metrics, but its clinical meaningfulness is not significantly above the

major class in which we predict all patients to be disease-free. This phenomenon is common

among all other models that do not consider the clinical alignment between the ground

truth and the generated reports. On the other hand, in our full model, if we consider

both natural language and clinical coherence, we can achieve the highest clinical disease

annotation accuracy while still retaining decently high NLG metrics.

We also conducted the ablation study with the model variant Ours (CCR), where we

use reinforcement learning on only the clinical accuracy. It is clear that we are unable to

2. We decide not to include NegBio (Peng et al., 2018), a previous state-of-the-art disease labeling system,
due to its significant performance gap with CheXpert as reported Irvin et al. (2019) and Johnson et al.
(2019)
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Model
Natural Language Clinical

CIDEr ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 Accuracy
M

IM
IC

-C
X
R

Major Class - - - - - - 0.828
Noise-RNN 0.716 0.272 0.269 0.172 0.113 0.074 0.803
1-NN 0.755 0.244 0.305 0.171 0.098 0.057 0.818
S&T 0.886 0.300 0.307 0.201 0.137 0.093 0.837
SA&T 0.967 0.288 0.318 0.205 0.137 0.093 0.849
TieNet 1.004 0.296 0.332 0.212 0.142 0.095 0.848
Ours (NLG) 1.153 0.307 0.352 0.223 0.153 0.104 0.834
Ours (CCR) 0.956 0.284 0.294 0.190 0.134 0.094 0.868
Ours (full) 1.046 0.306 0.313 0.206 0.146 0.103 0.867

O
p
e
n
-I

Major Class - - - - - - 0.911
Noise-RNN 0.747 0.291 0.233 0.130 0.087 0.061 0.914
1-NN 0.728 0.201 0.232 0.116 0.051 0.018 0.911
S&T 0.926 0.306 0.265 0.157 0.105 0.073 0.915
SA&T 1.276 0.313 0.328 0.195 0.123 0.080 0.908
TieNet 1.334 0.311 0.330 0.194 0.124 0.081 0.902
Ours (NLG) 1.490 0.359 0.369 0.246 0.171 0.115 0.916
Ours (CCR) 0.707 0.244 0.162 0.084 0.055 0.036 0.917
Ours (full) 1.424 0.354 0.359 0.237 0.164 0.113 0.918

Table 2: Automatic Evaluation Scores. The table is divided into natural language metrics and

clinical finding accuracy scores. BLEU-n counts up n-gram for evaluation, and accuracy

is the averaged macro accuracy across all clinical findings. Major class always predicts

negative findings.

achieve higher clinical coherence, though readability might be sacrificed. We thus conclude

that a combination of both NLG metrics and a clinically sensible objective is crucial in

training a useful model in clinical practice.

One thing to note is that although Noise-RNN is not dependent on the image, its NLG

metrics, especially ROUGE, are not far o↵ from models learned with supervision. We also

note that MIMIC-CXR is better for training such an encoder-decoder model not just for its

larger volume of data, but also due to its higher proportion of positive disease annotations

at 16.7% while Open-I only has 5.4%. This discrepancy leads to a 156 times di↵erence in

the number of images from diseased patients.

Clinical E�cacy Metrics In Table 3 we can compare the labels annotated by CheX-

pert calculated over all test set generated reports. Note that the labeling process gener-

ates discrete binary label as opposed to predicting continuous probabilities, and as such

we are unable to obtain discriminative metrics such as the Area Under the Receiver Op-

erator Characteristic (AUROC) or the Area Under the Precision-Recall Curve (AUPRC).

Precision-wise, Ours (CCR) achieves the highest overall scores including macro-average and

micro-average. The runner-up is Ours (full) model, which additionally considers language

fluency. Note that the macro- metrics can be quite noisy as the per-class metric can be

dependent on just a few examples. Many entries in the table are zeros, as they never yield

positive predictions and we regard them as zeros to penalize such behavior. Regarding the

recall metric, we are able to see a substantial drop in Ours (CCR) and Ours (full) as a result

of optimizing for accuracy. Accuracy is closely associated with precision but overpursuing it

might harm in terms of recall. It is worthwhile to notice that the nearest neighbor 1-NN has

the highest recall, and this is no surprise since as shown before (Strobelt and Gehrmann),

generated sequences tend to follow the statistics and favor common words too much. Rare
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Label Count 1-NN S&T SA&T TieNet
Ours
(NLG)

Ours
(CCR)

Ours
(full)

M
IM

IC
-C

X
R

Total 69031 - - - - - - -
No Finding 15677 0.432 0.299 0.349 0.339 0.339 0.491 0.405
Enlarged Cardiomediastinum 6064 0.123 0.134 0.163 0.179 0.180 0.202 0.167
Cardiomegaly 19065 0.440 0.535 0.438 0.464 0.000 0.678 0.704
Lung Lesion 2447 0.064 0.333 0.223 0.000 0.000 0.000 0.000
Airspace Opacity 21972 0.432 0.607 0.592 0.571 0.453 0.640 0.460
Edema 6594 0.265 0.331 0.244 0.405 0.266 0.280 0.000
Consolidation 2384 0.076 0.013 0.180 0.151 0.089 0.037 0.000
Pneumonia 3068 0.065 0.106 0.091 0.082 0.075 0.000 0.400
Atelectasis 16161 0.374 0.490 0.496 0.470 0.385 0.476 0.521
Pneumothorax 2636 0.079 0.034 0.095 0.081 0.081 0.039 0.098
Pleural E↵usion 15283 0.534 0.550 0.545 0.735 0.487 0.683 0.689
Pleural Other 1285 0.039 0.000 0.103 0.000 0.000 0.000 0.000
Fracture 2617 0.059 0.000 0.000 0.000 0.000 0.000 0.000
Support Devices 22227 0.534 0.823 0.847 0.827 0.794 0.849 0.880
Precision (macro) 0.253 0.304 0.312 0.307 0.225 0.313 0.309
Precision (micro) 0.383 0.414 0.430 0.473 0.419 0.634 0.586

Recall (macro) 0.265 0.173 0.232 0.220 0.209 0.126 0.134
Recall (micro) 0.400 0.276 0.367 0.355 0.360 0.227 0.237

Table 3: Clinical Finding Scores. The precision scores for each of the labels are listed and

aggregated into the overall precision scores. Recall scores are shown in the last two rows.

Macro denotes averaging the numbers in the table directly and micro accounts for class

prevalence.

combinations of tokens in the corpus can be easily neglected, resulting in predictions of

mostly major classes.

5.2. Qualitative Results

Evaluation of Generated Reports Table 4 demonstrates the qualitative results of our

full model. In general, our models are able to generate descriptions that align with the

logical flow of reports written by radiologists, which start from general information (such as

views, previous comparison), positive, then negative findings, with the order of lung, heart,

pleura, and others. TieNet also generates report descriptions with such logical flow but in

slightly di↵erent orders. For the negative findings cases, both our model and TieNet do well

on generating reasonable descriptions without significant errors. Regarding the cases with

positive findings, TieNet and our full model both cannot identify all radiological findings.

Our full model is able to identify the major finding in each demonstrated case. For example,

cardiomegaly in the first case, pleural e↵usion, and atelectasis in the second case.

A formerly practicing clinician co-author reviewed a larger subset of our generated re-

ports manually. They drew several conclusions. First, our full model tends to generate sen-

tences related to pleural e↵usion, atelectasis, and cardiomegaly correctly—which is aligned

with the clinical finding scores in Table 3. TieNet instead misses some positive findings

in such cases. Second, there are significant issues in all generated reports, regardless of

the source model, which include the description of supportive lines and tubes, as well as

lung lesions. For example, TieNet is prone to generate nasogastric tube mentions while

our model tends to mention tracheostomy or endotracheal tube, and yet both models have
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Ground Truth TieNet Ours (full)

cardiomegaly is moderate. bibasilar atelectasis is

mild. there is no pneumothorax. a lower cervical

spinal fusion is partially visualized. healed right

rib fractures are incidentally noted.

ap portable upright view of the chest.

there is no focal consolidation, e↵usion, or

pneumothorax. the cardiomediastinal

silhouette is normal. imaged osseous

structures are intact.

pa and lateral views of the chest.

there is mild enlargement of the

cardiac silhouette. there is no pleural

e↵usion or pneumothorax. there is no

acute osseous abnormalities.

as compared to the previous radiograph, the

monitoring and support devices are unchanged.

unchanged bilateral pleural e↵usions, with a

tendency to increase, and resultant areas of

atelectasis. the air collection in the bilateral soft

tissues is slightly decreased. unchanged right picc

line. no definite evidence of pneumothorax.

as compared to the previous radiograph,

the patient has received a nasogastric

tube. the course of the tube is

unremarkable, the tip of the tube projects

over the middle parts of the stomach.

there is no evidence of complication,

notably no pneumothorax. the other

monitoring and support devices are

constant. constant appearance of the

cardiac silhouette and of the lung

parenchyma.

as compared to the previous

radiograph, there is no relevant

change. tracheostomy tube is in place.

there is a layering pleural e↵usions.

NAME bilateral pleural e↵usion and

compressive atelectasis at the right

base. there is no pneumothorax.

the course of the dobbho↵ feeding catheter is

unremarkable, and its tip is seen projecting over

the stomach. there is no evidence of

complications, specifically no pneumothorax. as

compared to the prior radiograph dated DATE,

there has been no other significant interval

change.

ap portable upright view of the chest.

overlying ekg leads are present. there is no

focal consolidation, e↵usion, or

pneumothorax. the cardiomediastinal

silhouette is normal. imaged osseous

structures are intact.

as compared to the previous

radiograph, there is no relevant

change. the endotracheal tube

terminates approximately 3 cm above

the NAME. the endotracheal tube

extends into the stomach. there is no

evidence of complications, notably no

pneumothorax. there is no pleural

e↵usion or pneumothorax.

interval placement of a left basilar pigtail chest

tube with improving aeration in the left mid to

lower lung and near complete resolution of the

pleural e↵usion. there are residual patchy

opacities within the left mid and lower lung as well

as at the right base favoring resolving atelectasis.

no pneumothorax is appreciated on this semi

upright study. heart remains stably enlarged.

mediastinal contours are stably widened, although

this NAME be related to portable technique and

positioning. this can be better evaluated on

followup imaging. no pulmonary edema.

as compared to the previous radiograph,

the patient has been extubated. the

nasogastric tube is in unchanged position.

the lung volumes remain low. moderate

cardiomegaly with minimal fluid overload

but no overt pulmonary edema. no larger

pleural e↵usions. no pneumonia.

ap upright and lateral views of the

chest. there is moderate cardiomegaly.

there is no pleural e↵usion or

pneumothorax. there is no acute

osseous abnormalities.

Table 4: Sample images along with ground truth and generated reports. Note that upper

case tokens are results of anonymization.

di�culty identifying some specific lines such as chest tube or PICC line. Similarly, both

systems do not generate the sentence with positive lung parenchymal findings correctly.

From this (small) sample, we are unable to draw a conclusion whether our model or

TieNet truly outperforms the other since both present with significant issues and each has

strengths the other lacks. Critically, neither of them can describe the majority of the findings

in the chest radiograph well, especially for positive cases, even if the quantitative metrics

demonstrate the reasonable performance of the models. This illustrates that significant
progress is still needed in this domain, perhaps building on the directions we explore here

before these techniques could be deployed in a clinical environment.

Learning Meaningful Attention Maps Attention maps have been a useful tool in

visualizing what a neural network is attending to, as demonstrated by Rajpurkar et al.

(2017). Figure 3 shows the intermediate attention maps for each word when it is being

generated. As we can observe, the model is able to roughly capture the location of the

indicated disease or parts, but we also find, interestingly, that the attention map tends

to be the complement of the actual region of interest when the disease keywords follow

a negation cue word. This might indicate that the model is actively looking at the rest

of the image to ensure it does not miss any possible symptoms exhibited before asserting

disease-free states. This behavior has not been widely discussed before, partially because

attention maps for negations are not the primary focus of typical image captioning tasks,

and most attention mechanisms employed in a clinical context were on classification tasks

where they also do not specifically focus on negations.
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ap upright and lateral views of the chest. there is 
moderate cardiomegaly. there is no pleural effusion
or pneumothorax. there is no acute osseous 
abnormalities.

as compared to the previous radiograph, there is no 
relevant change. tracheostomy tube is in place. 
there is a layering pleural effusions. NAME 
bilateral pleural effusion and compressive atelectasis
at the right base. there is no pneumothorax.

(a) (b)

Figure 3: Visualization of the generated report and image attention maps. Di↵erent
words are underlined with its corresponding attention map shown in the same color.

Best viewed in color.

6. Conclusion

6.1. Limitations & Future Work

Our work has several notable limitations and opportunities for future work. First and

foremost, the post-processing step required to remove repeated sentences is an ugly necessity,

and we endeavor to remove it in future iterations of this work. Promising techniques exist

in NLG for the inclusion of greater diversity, which warrant further investigation here.

Secondly, our model operates using images in isolation, without consideration of whether

these images are part of a series of ordered radiographs for a single patient, which might

be summarized together. Using all available information has the potential to improve the

quality of the generated reports, and should definitely be investigated further.

Lastly, we note that though our model yields very strong performance for CheXpert

precision, its recall is much worse. Recall versus precision is favored to di↵erent degrees

in di↵ering clinical contexts. For example, for screening purpose, recall (sensitivity) is an

ideal metric since the healthy cases usually won’t give positive findings. However, precision

(positive predictive value) is much more critical for validating the clinical impression, which

is common in an ICU setting where patients receive a radiological study on the basis of strong

clinical suspicion. We believe that our system’s poor recall is a direct result of the setup of

our RL models and the CCR reward, which optimizes for accuracy and inherently boosts

precision. It is the choice of optimization objectives that lead to the results. Depending on

the actual clinical applications, we may, in turn, optimize Recall at Fixed Precision (R@P)

or F� score via methods described by Eban et al. (2016).

6.2. Reflections on Trends in the Field

In the course of this work, we also encounter several other larger points which are present

not only in our study but also in many related studies in this domain and warrant further

thought by the community.

System Generalizability CheXpert used in our models is rule-based, which is harder

to generalize to other datasets and to identify the implicit features inside the language

patterns. CheXpert is also specialized in English and would require considerable work to

re-code its rules for other natural languages. A more universal approach for subsequent
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research may use a learning-based approach for labeling to improve generalizability and

extend to corpora in di↵erent languages; for example, PadChest in Spanish.

Be Careful What You Wish For NLG metrics are known to be only limited substi-

tutes for a true assessment of readability (Kilickaya et al., 2016; Liu et al., 2016). For

radiology reports more specifically, this problem is even more profound, as prior works of-

ten use “readability” as a proxy for clinical e�cacy. Additionally, we note that these NLG

evaluation metrics are easily susceptible to gaming. In our results, our post-processing step

of removing exact duplicates actually worsens our CIDEr score, which is the opposite of

what should be desired for an NLG evaluation metric. Even if our proposed clinical coher-

ence aims at resolving the unwanted misalignment between NLG and real practice, we are

not able to obviously judge whether our system is better despite its performance on paper.

This fact is especially troubling given the increasing trend of using reinforcement learning

(RL) to directly optimize objectives, as has been done in prior work (Li et al., 2018) and as

we do here. Though RL can o↵er marked improvements in these automatic metrics, which

are currently the best the field can do, how well it translates to the real clinical e�cacy is

unclear. The careful design of improved evaluation metrics, specifically for radiology report

generation, should be a prime focus for the field going forward.

6.3. Conclusion

In this work, we develop a chest X-Ray radiology report generation system which hier-

archically generates topics from images, then words from topics. This structure gives the

model the ability to use largely templated sentences (through the generation of similar topic

vectors) while preserving its freedom to generate diverse text. The final system is also opti-

mized with reinforcement learning for both readability (via CIDEr) and clinical correctness

(via the novel Clinically Coherent Reward). Our system outperforms a variety of compelling

baseline methods across readability and clinical e�cacy metrics on both MIMIC-CXR and

Open-I datasets.
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Appendix A. Implementation Details

We briefly describe the details of our implementation in this section.

Encoder The image encoder CNN takes an input image of size 256 ⇥ 256 ⇥ 3. The last
layer before global pooling in a DenseNet-121 are extracted, which has a dimension of
8⇥ 8⇥ 1024, and thus K = 64. Densenet-121 (Iandola et al., 2014) has been shown to be
state-of-the-art in the context of classification for clinical images. The image features are
then projected to d = 256 dimensions with a dropout of p = 0.5.

Since typically in the X-ray image acquisition we are provided with the view position
indicating the posture of the patient related to the machine, we conveniently pass this
into the model as well. Indicated by a one-hot vector, the view position embedding is
concatenated with the image embedding to form an input to the later decoders.

Decoder As previously mentioned, the input image embedding to the LSTM has a di-
mension of 256, and it is the same for word embeddings and hidden layer sizes. The word
embedding matrix is pretrained with Gensim (Rehurek and Sojka, 2010) in an unsupervised
manner.

Training Details We implement our model on PyTorch (Paszke et al., 2017) and train
on 4 GeForce GTX TITAN X GPUs. All models are first trained with cross-entropy loss
with the Adam (Kingma and Ba, 2014) optimizer using an initial learning rate of 10�3

and a batch size of 64 for 64 epochs. Other than the weights stated above, the models are
initialized randomly. Learning rates are annealed by 0.5 every 16 epochs and we increase
the probability of feeding back a sample from the posterior p by 0.05 every 16 epochs. After
this bootstrapping stage, we start training with REINFORCE for another 64 epochs. The
initial learning rate for the second stage is 10�5 and is annealed on the same schedule.

Indicated by Rennie et al. (2017), we adopt CIDEr-D (Vedantam et al., 2015) metric as
the reward module used in rNLG. For the baseline for CCR, we choose a EMA momentum
� = 0.95. A weighting factor � = 10 has been chosen to balance the scales of the rewards
for our full model.
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Appendix B. TieNet Re-implementation

Since the implementation for TieNet (Wang et al., 2018) is not released, we re-implement it
with the descriptions provided by the original authors. The re-implementation details are
described in this section.

Overview TieNet stands for Text-Image Embedding Network. It consists of three main
components: image encoder, sentence decoder with Attention Network, and Joint Learning
Network. It computes a global attention encoded text embedding using hidden states from
a sentence decoder and saliency weighted global average pooling using attention maps from
the attention network. The two global representations are combined as an input to the
joint learning network. Finally, it outputs the multi-label classification of thoracic diseases.
The end products are automatic report generation for medical images and classification of
thoracic diseases.

Encoder An image of size 256⇥ 256⇥ 3 is taken by the image encoder CNN as an input.
The last two layers of ResNet-101 (He et al., 2016) are removed since we are not classifying
the image. The final encoding produced has a size of 14 ⇥ 14 ⇥ 2048. We also fine-tune
convolutional blocks conv2 through conv4 of our image encoder during training time.

Decoder We also include the view position information by concatenating the view posi-
tion embedding with the image embedding to form input. The view position embedding
is indicated by a one-hot vector. At each decoding step, the encoded image and the pre-
vious hidden state with a dropout of p = 0.5 is used to generate weights for each pixel in
the attention network. The previously generated word and the output from the attention
network are fed to the LSTM decoder to generate the next word.

Joint Learning Network TieNet proposed an additional component to automatically
classify and report thoracic diseases. The joint learning network takes hidden states and
attention maps from the decoder and computes global representations for report and images,
then combines the result as the input to a fully connected layer to output disease labels.

In the original paper, r indicates the number of attention heads, which we set as r = 5;
s is the hidden size for attention generation, which we set as s = 2000. One key di↵erence
from the original work is that we are classifying the joint embeddings into CheXpert (Irvin
et al., 2019) annotated labels, and hence we have the class count M = 14. The disease
classification cross-entropy loss LC and the teacher-forcing report generation loss LR are
combined as Loverall = ↵LC + (1� ↵)LR, in which Loverall is the loss for which the network
optimizes. However, the value ↵ was not disclosed in the original work and we use ↵ = 0.85.

Training We implement TieNet on PyTorch (Paszke et al., 2017) and train on 4 GeForce
GTX TITAN XGPUs. The decoder is trained with cross-entropy loss with the Adam (Kingma
and Ba, 2014) optimizer using an initial learning rate of 10�3 and a mini-batch size of 32
for 64 epochs. Learning rate for the decoder is decayed by a factor of 0.2 if there is no
improvement of BLEU (Papineni et al., 2002) score on the development set in 8 consecutive
epochs. The joint learning network is trained with sigmoid binary cross-entropy loss with
the Adam (Kingma and Ba, 2014) optimizer using a constant learning rate of 10�3.

Result Since we are not able to access the original implementation of TieNet and we
additionally inject view position information to the model, we might have small variations
in result between the original paper and our re-implementation. We only compare the report
generation part of TieNet to our model.
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