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Abstract
The treatment e�ects of medications play a key role in guiding medical prescriptions. They are

usually assessed with randomized controlled trials (RCTs), which are expensive. Recently, large-scale
electronic health records (EHRs) have become available, opening up new opportunities for more cost-
e�ective assessments. However, assessing a treatment e�ect from EHRs is challenging: it is biased
by unobserved confounders, unmeasured variables that a�ect both patients’ medical prescription and
their outcome, e.g. the patients’ social economic status. To adjust for unobserved confounders, we
develop the medical deconfounder, a machine learning algorithm that unbiasedly estimates treatment
e�ects from EHRs. The medical deconfounder first constructs a substitute confounder by modeling
which medications were prescribed to each patient; this substitute confounder is guaranteed to capture
all multi-medication confounders, observed or unobserved (Wang and Blei, 2018). It then uses this
substitute confounder to adjust for the confounding bias in the analysis. We validate the medical
deconfounder on two simulated and two real medical data sets. Compared to classical approaches, the
medical deconfounder produces closer-to-truth treatment e�ect estimates; it also identifies e�ective
medications that are more consistent with the findings in the medical literature.
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1. Introduction

The treatment e�ect of medications plays a key role in guiding medical prescriptions. Usually, a
treatment e�ect is assessed with a randomized controlled trial (RCT): each patient is randomly
assigned to the treatment or the control group; only the treatment group receives the medication. The
treatment e�ect is then assessed by comparing the average outcome of the two groups. RCTs are
considered the gold standard for treatment e�ect assessment (Concato et al., 2000). Their randomized
treatment assignments make RCTs immune to confounding bias and amenable to classical statistical
tests of significance (Byar et al., 1976; Suresh, 2011). But, though theoretically sound, RCTs have
substantial limitations: they are expensive, labor-intensive, and time-consuming. Moreover, they also
do not always generalize to the real patient population (Deaton and Cartwright, 2018; Sanson-Fisher
et al., 2007).

Electronic health records (EHRs) have recently emerged as an appealing alternative data source
to RCTs for estimating treatment e�ects (Schuemie et al., 2018; Levine et al., 2018; Tannen et al.,
2009). EHRs contain large-scale observational data about the medical history of patients, such as
patient demographics, diagnosis, medications, and laboratory tests. In particular, patients’ medication
records and their lab tests can serve as evidence for medications’ treatment e�ect: we can view their
medication records as the treatment assignments and their lab tests as the outcome. This view of
EHRs opens up new opportunities for more cost-e�ective ways of estimating treatment e�ects.

How can we use EHRs to estimate a treatment e�ect? A naive approach is to compare, for each
medication, the outcome of the treated and the untreated patients. However, this approach leads to a
biased assessment of the treatment e�ect; the treated and untreated population may not be comparable.
For example, the two populations may be di�erent in their age distributions, and this di�erence in age
can lead to a di�erence in their health outcomes. Hence, naively comparing the outcomes between
the treated and the untreated does not lead to correct treatment e�ect estimate of the medication.
In causal inference terms, age is a confounder; it a�ects both whether a patient is treated and her
outcome. When confounders are observed, we can adjust for them using classical causal inference
methods like matching, subclassification and inverse probability weighting (Imbens and Rubin, 2015;
Lopez et al., 2017; McCa�rey et al., 2013; Zanutto et al., 2005; Rassen et al., 2011; Lechner, 2001).

However, in EHRs many confounders are unobserved. For example, a patient’s social economic
status (SES) can influence both what medications she receives and her health condition. However,
SES is an integrated measure of a person’s sociological (e.g., occupation and education level) and
economical (e.g., income) position in the society; it is typically not recorded in EHR systems. Such
unobserved confounders challenge traditional causal inference methods; these methods assume all
confounders are observed (Hernan and Robins, 2019).

To tackle this challenge, we develop the medical deconfounder, a machine learning approach
that unbiasedly assesses treatment e�ects from EHRs. The medical deconfounder takes in patients’
medication records (as the treatment) and lab tests (as the outcome) from EHRs; it outputs a set
of medications that are deemed e�ective. To adjust for unobserved confounders, the medical de-
confounder first models patients’ medication records using a probabilistic factor model. It then
constructs a substitute confounder based on this probabilistic factor model; this substitute confounder
is guaranteed to capture all multi-medication confounders, both observed and unobserved (Wang and
Blei, 2018). The medical deconfounder finally fits an outcome model. This outcome model describes
how the lab test (outcome) depends on both the medications prescribed and the substitute confounder.
The dependence on medications in the outcome model reflects the treatment e�ect of the medications.
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Why might the medical deconfounder work? The key idea is to infer unobserved confounders by
modeling how medications are prescribed together. For example, consider a cohort of patients with
type 2 diabetes mellitus. We are interested in which of the medications taken by diabetic patients
have an e�ect on their hemoglobin A1c (HbA1c). One confounder is body mass index (BMI), which
a�ects both the medical prescription and the outcome HbA1c. If a patient is overweight or obese
(i.e. has a high BMI), they are often prescribed with both diabetic medications and weight-lowering
medications; overweight or obese patients also have higher HbA1c. Moreover, BMI is not recorded
for all patient visits in the EHRs, rendering it an unobserved confounder. However, we can infer
this unobserved confounder—BMI—by looking at which medications are prescribed together. If a
patient is prescribed with both diabetic medications and weight-lowering medications, she probably
has a high BMI. This is precisely what the medical deconfounder does; it constructs a substitute for
unobserved confounders by modeling which medications are prescribed together.

In the next sections, we set up the treatment e�ect assessment problem in causal inference
notations. We then describe the medical deconfounder and evaluate it on both simulation studies and
real case studies. We apply the medical deconfounder to four datasets: two simulated and two real
on distinct types of diseases. Across datasets, the medical deconfounder produces closer-to-truth
treatment e�ect estimates than classical methods; it also identifies e�ective medications that are more
consistent with the medical literature.

Technical Significance We propose the medical deconfounder, a machine learning approach to
treatment e�ect estimation from EHRs. The medical deconfounder leverages probabilistic factor
models to improve treatment e�ect estimates from EHRs. Between the two most popular options of
probabilistic factor models (i.e. Poisson matrix factorization (PMF) (Schmidt et al., 2009; Gopalan
et al., 2015) and deep exponential family (DEF) (Ranganath et al., 2015)), we find DEF helps to
recover closer-to-truth treatment e�ects than PMF.

Clinical Relevance Assessing treatment e�ects is an important task that guides medical prescription.
However, this task is challenging when the data comes from observational EHRs as opposed to
randomized experiments. The presence of multiple medications further complicates the task. In this
work, we propose the medical deconfounder as a solution to treatment e�ect assessment with EHRs.
The medical deconfounder can adjust for unobserved confounders in EHRs and identify medications
that causally a�ects the clinical outcome of interest.

Related work This work draws on two threads of related work.
The first body of related work is on probabilistic modeling for causal inference. Probabilistic

models excel at capturing hidden patterns of high-dimensional data; examples include latent Dirichlet
allocation (LDA) (Blei et al., 2003) and Poisson matrix factorization (PMF) (Schmidt et al., 2009;
Gopalan et al., 2015). Recently, probabilistic modeling has been applied to causal inference. For
example, Louizos et al. (2017) use variational autoencoders to infer unobserved confounders from
proxy variables. Kocaoglu et al. (2017) and Ozery-Flato et al. (2018) connect generative adversarial
network (GAN) and causal inference. Tran and Blei (2017), Wang and Blei (2018), and Ranganath
and Perotte (2018) leverage probabilistic models for estimating unobserved confounders of multiple
causes. The medical deconfounder in this work extends their use of probabilistic models into assessing
the treatment e�ect of medications.

The second body of related work is on multiple causal inference with unobserved confounding.
Tran and Blei (2017) and Heckerman (2018) focus on genome-wide association studies (GWAS); they
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consider single-nucleotide polymorphisms (SNPs) as the multiple causes and estimate their e�ects
on a trait of interest (e.g., height). Wang and Blei (2018) develop the deconfounder algorithm for
multiple causal inference; it leverages probabilistic factor models to infer unobserved multi-cause
confounders from the assignments of the multiple causes. Multiple causal inference with unobserved
confounding was also studied in Ranganath and Perotte (2018) with an information-theoretic approach;
their method is applied to estimate the causal e�ect of multiple lab measurements on the length of
stay in the ICU. More recently, Bica et al. (2019) extend the deconfounder algorithm to time series
data; they use recurrent neural network (RNN) to infer time-dependent unobserved confounders for
multiple causal inference. The medical deconfounder presents another extension of the deconfounder
algorithm; it extends the deconfounder to assess causal e�ect of multiple medications in EHRs.

2. The medical deconfounder

We frame treatment e�ect assessment as a multiple causal inference (Wang and Blei, 2018; Ranganath
and Perotte, 2018) and describe the medical deconfounder.

2.1. Treatment e�ect assessment as a multiple causal inference

We first set up notation. Consider a dataset of N patients and D (D > 1) medications. Denote Ai

as the medication record of patient i, i = 1, . . . , n; it is a binary vector of length D that describes
whether patient i has taken each of the D medications Ai = (Ai1, . . . , AiD) 2 {0, 1}D. For example,
the medication record of patient i is Ai = (0, 1, 0, . . . , 0) if she has only taken the second medication.
Each patient also has an outcome Yi. For example, it can be the di�erence of pre-treatment and
post-treatment lab measurements of patient i. For each patient, we observe both her medication
records and her outcome

{(Ai, Yi) : i = 1, . . . , n}.

The goal of treatment e�ect assessment is to identify the medications that (causally) a�ect the
clinical outcome. In other words, all else being equal, the clinical outcome of a patient should
be di�erent if she had (or had not) taken the e�ective medication. We formulate this goal as a
(multiple) causal inference problem (Imbens and Rubin, 2015; Rubin, 1974, 2005; Wang and Blei,
2018; Ranganath and Perotte, 2018). Denote Yi(a) as the potential outcome of patient i if she were
assigned with treatment a of the medications. Either factual or counterfactual, this treatment a is a
D-dimensional binary vector of medications: a 2 {0, 1}D. Then the jth medication causally a�ects
the outcome if the expected potential outcome of a patient is di�erent had she taken (or not taken) the
jth medication:

E [Yi(Ai1, . . . , Aij�1, 1, Aij+1, . . . , AD)� Yi(Ai1, . . . , Aij�1, 0, Aij+1, . . . , AD)] 6= 0. (1)

While treatment e�ects depend on all the potential outcomes {Yi(a) : a 2 {0, 1}D}, we only
observe one of them—the one that corresponds to the patient’s medication record: Yi = Yi(Ai).
To infer treatment e�ects from only the observed data, we develop the medical deconfounder by
extending the deconfounder algorithm for multiple causal inference (Wang and Blei, 2018). The
deconfounder algorithm can unbiasedly estimate E[Yi(a)] � E[Yi(a0)] for all a and a0 (and hence
the left hand side of Equation (1)). It assumes “no unobserved single-cause confounders”, i.e. no
unmeasured variables can a�ect the outcome and only one medication (Wang and Blei, 2018).
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The idea of the deconfounder is to construct a substitute confounder Zi by fitting a probabilistic
factor model to the medication records {Ai : i = 1, . . . , n}. This constructed substitute confounder
Zi satisfies ignorability (Rosenbaum and Rubin, 1983; Imai and Van Dyk, 2004)

Yi(a) ?? Ai |Zi, (2)

assuming “no unobserved single-cause confounders.” This ignorability given Zi (Equation (2))
greenlights causal inference. We can treat the substitute confounder Zi as if it were an observed
confounder and proceed with causal inference (Imbens and Rubin, 2015)

E [Yi(a)] = EZ [EY [Yi |Zi,Ai = a]] . (3)

Equation (3) lets us conclude treatment e�ects from EHRs and evaluate whether each medication is
causally e�ective via Equation (1).

The medical deconfounder extends the deconfounder into medical settings. It operates in two
steps. First, we fit a probabilistic factor model to all the medication records Ai. This step lets us
construct a substitute confounder Zi for each patient. We then fit an outcome model treating this
substitute confounder Zi as an observed confounder. The fitted outcome model leads to treatment
e�ect estimates of medications. We discuss the details of these two steps in the next sections.

2.2. The medical deconfounder

We describe the medical deconfounder in details. We first discuss how to construct a substitute
confounder from prescription records in EHRs. Then we discuss how to assess the treatment e�ect of
medications with an outcome model.

�.�.�. C����������� ��� ���������� ����������

The medical deconfounder constructs a substitute confounder Zi by fitting a probabilistic factor
model of the medication records {Ai : i = 1, . . . , N}. This probabilistic factor model needs to
capture the observed distribution of the medication records p(Ai). We study three options of the
probabilistic factor model for the medical deconfounder: probabilistic principal component analysis
(PPCA), Poisson matrix factorization (PMF), and deep exponential family (DEF). Figure 1 shows the
graphical representations of the three probabilistic factor models.

Probabilistic principal component analysis (PPCA) PPCA is a probabilistic formulation of
PCA using a Gaussian latent variable model (Tipping and Bishop, 1999). For each patient i, their
medication record Ai = (Ai1, . . . , AiD) is modeled as a normal random variable; its mean is an
inner product of a K-dimensional latent variable Zi and some (K ⇥D)-dimensional parameter ✓;
we posit a standard normal prior on each Zi: for i = 1, . . . , N, and j = 1, . . . , D, we have

Zi ⇠ N (0,�2
),

Aij |Zi ⇠ N (zTi ✓j ,�
2
).

The latent variable Zi will serve as the substitute confounder in the medical deconfounder.
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Figure 1: Graphical representation of PPCA (left), PMF (left) and a two-layer DEF (right). Random
variables are represented by circles (shaded: observed; unobserved: hollow). Priors are represented
by solid dots. In PPCA, zi, ✓j and aid are modeled with normal distributions. In PMF, zi and ✓j are
modeled with Gamma distribution, and aid are modeled with Poisson distribution.

Poisson matrix factorization (PMF) PMF is a probabilistic factor model specific to modeling
binary or count data (Schmidt et al., 2009; Gopalan et al., 2015). Because each medication treatment
Aij is binary—a patient either takes or does not take a medication, we can model the patients’
medication records Ai with PMF. PMF is a similar factor model to PPCA except in its distributional
assumptions; PMF models each medication treatment with a Poisson distribution and posits Gamma
priors on the latent variables Zi: for i = 1, . . . , N, and j = 1, . . . , D,

Zi ⇠ Gamma(↵,�),
✓j ⇠ Gamma(↵,�),

Aij |Zi ⇠ Poisson(ZT
i ✓j).

In PMF, Zi is the patient-specific latent variable for patient i; ✓j is medication-specific latent variable
for medication j; Aij indicates whether patient i took medication j. BothZi and ✓j areK-dimensional
random variables. The latent variable Zi will serve as the substitute confounder downstream.

Deep exponential family (DEF) A DEF is a flexible probabilistic factor model that has multiple
layers of latent variables as in neural networks (Ranganath et al., 2015). We focus on a two-layer
DEF; it has the following structure:

Wl,k ⇠ Gamma(↵,�),
Zi,2,k ⇠ Gamma(↵,�),

Zi,1,k |Zi,2,k ⇠ Gamma(↵, g(W1,kZi,2,k)),

Ai,d |Zi,1 ⇠ Poisson(g(W0Zi,1)).

The variable Zi,l,k corresponds to the kth latent variable in the l-th layer for patient i. The variable
Wl,k is a K-dimensional weight vector in the l-th layer. The variable Aid is a binary indicator of
whether patient i is prescribed with medication j.

In all three probabilistic factor models, the latent variableZi will serve as the substitute confounder
in downstream treatment e�ect estimation. Specifically, we will fit the probabilistic model, i.e. infer ✓,
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using Markov chain Monte Carlo methods (Robert and Casella, 2005) or variational inference (Jordan
et al., 1999; Blei et al., 2017). We then compute the posterior expectation of Zi given the inferred ˆ✓,

ˆZi , EZ

h
Zi |Ai, ˆ✓

i
.

If the probabilistic factor model fits the data well, then we can use the constructed substitute con-
founder ˆZi in the downstream treatment e�ect assessment.

To assess the adequacy of the probabilistic factor model, we follow Wang and Blei (2018) to
perform a predictive check (Gelman et al., 1996). For each patient i, we randomly hold out s% entries
of her medication record Ai. The predictive check then proceeds in three steps:

1. Generate replicated datasets for the heldout entries based on the inferred posterior p(Zi |Ai, ˆ✓).

2. Compare the value of a test statistic on the replicated datasets to that of the observed dataset.
The test statistic is the expected log-likelihood of the heldout entries

t(Xheldout) , EZ,✓[log p(Xheldout | Z, ˆ✓) | Xobs].

We compute this test statistic on both the observed dataset Xheldout and each replicated
dataset Xrep

heldout.

3. Conclude the probabilistic factor model is adequate if the predictive score is close to 0.5. The
predictive score is defined as

predictive score , p
�
t(Xrep

heldout) < t(Xheldout)
�
. (4)

A close-to-0.5 predictive score indicates neither under-fitting nor over-fitting of the data (Wang
and Blei, 2018). Otherwise, the probabilistic factor model is inadequate.

If a probabilistic factor model is deemed inadequate by the predictive check, we must choose a di�erent
factor model. We repeat the construction of the substitute confounder ˆZi until one constructed ˆZi

passes the predictive check.

�.�.�. F������ � B������� ������ ���������� ������� �����

After constructing substitute confounder ˆZi, the medical deconfounder adjusts for it as if it were
an observed confounder in causal inference. Specifically, we fit a Bayesian regression model to Yi
against both the medication record Ai and the substitute confounder ˆZi

Yi ⇠ N (

DX

j=1

�jAij +

KX

k=1

�k ˆZik,�
2
),

whereK is the dimension of the substitute confounderZi. For studies with more than two medications,
we posit an isotropic Gaussian prior N (0,↵�1I) on all coe�cients �j and �k.

We estimate the regression coe�cients �j , j = 1, . . . , D with mean-field variational inference.
They indicate the average treatment e�ect of each medication:

�j = E [Yi(Ai1, . . . , Aij�1, 1, Aij+1, . . . , AiD)� Yi(Ai1, . . . , Aij�1, 0, Aij+1, . . . , AiD)] . (5)

When the coe�cient �j is significantly di�erent from zero, we conclude that medication j causally
a�ects the clinical outcome of interest.
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3. Simulation studies

We first study the medical deconfounder on two simulation studies. The two simulation studies are
of distinct nature: one has only two causes; the other has many causes. Below we first describe
the evaluation metrics and the baseline method we compare, and then discuss the details of the two
simulation studies.

3.1. Performance metrics and baseline methods

In both simulation studies, we evaluate the performance of the medical deconfounder by the closeness-
to-truth of its causal estimates. We then compare these estimates with classical methods that do not
adjust for unobserved confounders.

Performance metrics As a measure of closeness-to-truth in simulations, we compute the root
mean square error (RMSE) between the estimated treatment e�ects and the true e�ects. The RMSE
is defined as

RMSE( ˆ�,�) =

vuut 1

D

DX

j=1

(

ˆ�j � �j)2,

where ˆ� is the estimated treatment e�ect and � is the true e�ect.
We also evaluate the posterior distribution of the treatment e�ect by “ % coverage,” i.e. how often

the estimated 95% credible interval (CI) covers the true treatment e�ect. We derive the 95% credible
interval (CI) from the posterior distribution of the outcome model, and compute the % coverage by

% coverage =

Number of CI covers the truth

Number of total treatments

⇥ 100%.

Baseline methods We compare the medical deconfounder with classical methods that do not
adjust for unobserved confounders. These methods simply model the outcome as a function of the
medical records only; they do not adjust for any confounders. We call them "the unadjusted model.”
Specifically, they fit the following Bayesian regression model

Yi ⇠ N (

DX

j=1

�jAij ,�
2
).

They then take the � coe�cients as the e�ect size of each medication.
In addition to the unadjusted model, we also compare the medical deconfounder to an oracle model.

The oracle model has access to the true unobserved confounders Ci; it fits a Bayesian regression
model to both the medical records Ai (medications) and the true confounders

Yi ⇠ N (

DX

j=1

�jAij +

KX

k=1

�kCik,�
2
).

We emphasize that these unobserved confounders Ci are not available in practice. The oracle model
illustrates the best possible performance in assessing treatment e�ects.
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Computation We fit probabilistic factor models using black box variational inference (Ranganath
et al., 2014) as implemented in Edward (Tran et al., 2016, 2017). We then draw 1000 samples
from the inferred posterior and fit the outcome model using automatic di�erentiation variational
inference (ADVI) (Kucukelbir et al., 2017) as implemented in the rstanarm package (Carpenter et al.,
2017) of R (R Core Team, 2013).

3.2. Simulation study I: A two-medication simulation

The first simulation study of the medical deconfounder is on a toy example of only two medications.
Under unobserved confounding, the medical deconfounder is able to tell the causal (i.e. causally-
e�ective) medication from the non-causal (i.e. non-causally-e�ective) medication. By contrast, the
unadjusted model returns both medications as causal.

Experimental setup We experiment the medical deconfounder in two setups. In both, there is
an unobserved confounder Ci and two medications Ai1 and Ai2 for each patient i. The unobserved
confounder Ci is multi-medication; both medications Ai1 and Ai2 are linearly dependent on the
unobserved confounder Ci. We then simulate a continuous outcome Yi that is also linearly dependent
on the confounder Ci. We consider two setups of the outcome. In the first setup, neither of the
causes is causal. In the second, one of the causes is causal. (Figure 2 illustrates the two settings with
graphical models.)

Scenario 1 
no real cause

Scenario 2
one real cause

!" !# y

c

!" !# y

c

Figure 2: Causal graph of the two setups of the two-medication simulation study. Scenario 1 includes
no real cause, while setup 2 has one real cause a2. The confounder c is a multi-medication confounder
in both setups.

Specifically, for each patient i, we simulate her confounder Ci and the medication records Ai as

Ci ⇠ N (0, 1),

A1i = 0.3Ci + ✏i,

A2i = 0.4Ci + ✏i,

where ✏i ⇠ N (0, 1). In the first setup, the outcome is simulated as

Yi = 0.5Ci + ✏i.

In the second, it is simulated as

Yi = 0.5Ci + 0.3A2i + ✏i,

where ✏i ⇠ N (0, 1). In both setups, we simulate a sample size of N = 1, 000.

9
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Deconfounding with the medical deconfounder We use probabilistic principal component analysis
(PPCA) with latent dimensionality K = 1 as the probabilistic factor model. To assess the model fit,
we perform the predictive check for the factor model by randomly holding out 20% of the data. The
fitted model returns a predictive score close to 0.5; it passes the predictive check.

medication 1 medication 2
coef (std err) p-value coef (std err) p-value

Truth 0.000 1 0.000 1
Oracle 0.025 (0.039) 0.522 -0.022 (0.040) 0.594
Unadjusted 0.125 (0.042) 0.003 0.141 (0.041) 0.001
Med. Dcf. 0.020 (0.081) 0.803 0.052 (0.071) 0.461

Table 1: Estimated treatment e�ects in the two-medication simulation with no real cause. The p-value
for each medication tests the null hypothesis that the coe�cient is equal to zero (no causal e�ect).
The medical deconfounder (“Med. Dcf.”) returns closer-to-truth p-values of the coe�cients than the
baseline method.

medication 1 medication 2
coef (std err) p-value coef (std err) p-value

Truth 0.000 1 0.300 0
Oracle 0.058 (0.038) 0.132 0.329 (0.039) 0.000
Unadjusted 0.181 (0.040) 0.000 0.469 (0.040) 0.000
Med. Dcf. 0.069 (0.063) 0.272 0.333 (0.072) 0.000

Table 2: Estimated treatment e�ects in the two-medication simulation with one real cause. The
p-value for each medication tests the null hypothesis that the coe�cient is equal to zero (no causal
e�ect). The medical deconfounder (“Med. Dcf.”) returns closer-to-truth p-values of the coe�cients
than the baseline method.

Results Table 1 and Table 2 present the regression coe�cients and p-values of the three models
in the two experimental setups. We compare the unadjusted model (no control), the medical decon-
founder (control for the substitute confounder), and the oracle model (control for the true unobserved
confounder). In both setups, the unadjusted model leads to biased causal coe�cient estimates. The
medical deconfounder reduces the bias of estimates, and returns causal coe�cients that are nearly the
same as those from the oracle.

Moreover, the medical deconfounder is able to identify the true causal medication in the second
setup. After adjusting for the substitute confounder, the coe�cient of the true causal medication
stays significant while the non-causal one becomes insignificant. Their p-values are consistent with
whether they are causal. In contrast, the unadjusted model returns statistically significant coe�cients
for both medications; it leads to a wrong conclusion that both medications are causal. In rare runs,
the medical deconfounder did not adjust the raw coe�cient estimates significantly, but even then,
it increased the variance of the estimate of the non-causal medication so that it can still correctly
classify medications as causal or non-causal.

10



M������ D�����������

3.3. Simulation study II: A multi-medication simulation

We next evaluate the medical deconfounder on a multi-medication simulated dataset. As in the
first simulation, the medical deconfounder improves the e�ect size estimates for the medications;
the confidence interval of treatment e�ect estimates also covers the truth more often than classical
methods.

Experimental setup We simulate a dataset of D = 50 medications and N = 5, 000 patients. The
medication record Ai of each patient is influenced by a ten-dimensional multi-medication unobserved
confounder Ci. A real-valued outcome is simulated as a function of the confounder Ci and the
medication record Ai. The simulated dataset is at a similar scale to the dataset we use in the empirical
studies.

We simulate each multi-medication confounder Cik from a standard normal distribution,

Cik ⇠ N (0, 1), k = 1, . . . , 10.

Then we simulate the medication record of each patient i from a Bernoulli distribution,

Aij ⇠ Bern(�(
KX

k=1

�kjCik)), j = 1, . . . , 50,

where �(·) is the sigmoid function and �kj ⇠ N (0, 0.52). Finally, we simulate a continuous outcome
Yi as a function of both the confounder and the medication record,

Yi =
DX

j=1

�jAij +

KX

k=1

�kCik + ✏i,

where ✏i ⇠ N (0, 1), �j ⇠ N (0, 0.252), and �k ⇠ N (0, 0.252). To mimic the sparsity of causal
medications in practice, we randomly select 80% of the medications and set their coe�cients �j to
zero, therefore, only 10 medications are causal.

Deconfounding with the medical deconfounder We implement two probabilistic factor models
PMF and DEF for the medical deconfounder. The PMF passes the predictive check with K = 450;
the DEF passes the predictive check with 30 and 4 latent variables in each layer. Both factor models
yield predictive scores close to 0.5.

RMSE % Coverage
All Causal Non-causal

Oracle 0.05 78 50 85
Unadjusted 0.14 38 30 40
Med. Dcf. (PMF) 0.12 38 30 40
Med. Dcf. (DEF) 0.13 48 40 50

Table 3: RMSE and % coverage of CI of the multi-medication simulation. (Lower RMSE is better;
higher % coverage is better.) The medical deconfounder produces closer-to-truth causal estimates than
the unadjusted model. The CI of estimates from DEF covers more true e�ects than the unadjusted.
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Results Table 3 summarizes the causal estimation results of the oracle model, the unadjusted model,
and the medical deconfounder with PMF and DEF as probabilistic factor models. The medical
deconfounder with both probabilistic factors produce less biased e�ect estimates compared to the
unadjusted model. Also, 48% of the CI’s from DEF covers the truth, higher than the 38% from the
unadjusted model. The increase of % coverage by DEF is a consequence of both correctly identifying
more causal treatments, and decreasing the false positives.

4. Case studies

We apply the medical deconfounder to two case studies on real datasets of distinct disease cohorts.
In both studies, the medical deconfounder identifies causal medications that are consistent with the
medical literature. Below we discuss the two disease cohorts and present the empirical results.

4.1. Cohort extraction and evaluation methods

In both case studies, we extract patient cohorts from the Columbia University Medical Center database.
The database contains de-identified electronic health records standardized and stored according to
the Observational Health Data Science and Informatics (OHDSI) format (Hripcsak et al., 2016). We
apply the medical deconfounder to each cohort. Medical experts then perform literature reviews and
evaluate the results returned by the medical deconfounder.

0-7 30 Days

Initial diagnosis of potassium disorder
AND 
has at least one medication

At least 1 potassium lab testAt least 1 potassium lab test

0-120 365 Days

Initial diagnosis of type 2 diabetes mellitus 
AND 
has at least one medication

At least 1 HbA1c lab testAt least 1 HbA1c lab test

Figure 3: The diagram of cohort definition for potassium disorders (top) and type 2 diabetes mellitus
(bottom). Patients meeting all criteria in the diagram are included in the cohort. Lines and arrows
represent required intervals between events.
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Case study I: Potassium disorders cohort. Patients who meet the following criteria are included
in the potassium disorder cohort:

• was diagnosed with hypokalemia or hyperkalemia with continuous observation of at least 7
days before and 30 days after initial diagnosis (index date);

• has at least 1 measurement of potassium in serum/blood within 7 days prior to the first diagnosis;

• has at least 1 measurement of potassium in serum/blood within 30 days after the first diagnosis;

• has at least 1 medication exposure on the same day of initial diagnosis.

After data preprocessing, there are 6185 patients and 33 unique medications included in this cohort.

Case study II: Type 2 diabetes cohort. Patients who meet the following criteria are included in
the type 2 diabetes cohort:

• was diagnosed with type 2 diabetes with continuous observation of at least 30 days before and
30 days after the initial diagnosis (index date);

• has at least 1 measurement of HbA1C 120 days prior to the first diagnosis;

• has at least 1 measurement of HbA1C within 365 days after the first diagnosis;

• has at least 1 medication exposure on the same day of initial diagnosis.

After data preprocessing, there are 5564 patients and 30 unique medications included in this cohort.

Data preprocessing For both cohorts, patients’ medication records on the index date and their lab
measurements immediately before and after the index date are extracted from the database using the
OHDSI Atlas interface (OHDSI team, 2019). All medications are mapped to ingredients and dosage
is ignored. To reduce the sparsity of the patient-medication matrix, we remove the 5% least frequent
ingredients from downstream analysis.

Evaluation methods Due to the unavailability of true treatment e�ects in real datasets, we compare
the medical deconfounder estimates with the findings reported in the medical literature. Medical
experts perform literature review for all the medications appeared in the studies; they look for evidence
indicating the presence or absence of causal relationships between the medications and the outcome
of interest.

4.2. Case study I: Potassium disorders

We apply the medical deconfounder to the patient cohort of potassium disorders. Consider all the
medications taken by the cohort of patients with potassium disorders. The goal is to identify which
of these medications have causal e�ects on the serum potassium level. We find that the medications
identified to be causal by the medical deconfounder are in concordance with the evidence from the
medical literature.
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Figure 4: Treatment e�ects of medications in the potassium disorders cohort estimated by the
unadjusted model (left) and the medical deconfounder (right). The medical deconfounder returns
causal medications that are more consistent with the medical literature. The mean, 80% credible
interval, and 95% credible interval of the estimated coe�cients are indicated by the circle, the
horizontal bar, and the solid line respectively. A medication is determined causal if its 95% credible
interval excludes zero and is marked with "***". A positive coe�cient means that the medication
increases serum potassium.
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Results Figure 4 shows the coe�cients estimated by the medical deconfounder (control for the
substitute confounder) and the unadjusted model (no control). The medical deconfounder reduces
false positive discoveries while the true causal medications remain significant after adjustment. (A
medication is determined causal if its 95% credible interval excludes zero. )

Five medications are found to be causal by both models with well-supported medical literature
on their physiological mechanisms: (1) sodium polystyrene sulfonate is a potassium-binding resin
commonly used to treat hyperkalemia by increasing the excretion of potassium in stool (Batterink et al.,
2015); (2) insulin lowers serum potassium by internalizing potassium intracellularly (McNicholas
et al., 2018); (3) piperacillin (often prescribed with tazobactam) is a commonly used antibiotic for
various infections and are report to cause hypokalemia in a series of case report (Zaki and Lad, 2011;
Hussain et al., 2010; Polderman and Girbes, 2002); (4) sodium bicarbonate raises systemic pH, a
process accompanied by potassium movement into the cells to maintain electroneutrality, leading to
decrease of potassium in the blood (Abuelo, 2018; Burnell et al., 1956); (5) potassium chloride is
commonly administered to replenish potassium in patients with low serum potassium.

Twenty-seven medications are identified as non-causal by the medical deconfounder, including
eight medications changing from causal to non-causal after deconfounding. For most of these
medications, we can not find evidence in the medical literature that suggests their influence on
potassium, although a few medications may require more detailed evaluation. Among them, one
medication albuterol is reported to have a potassium-lowering e�ect in patients with renal failure
(Montoliu et al., 1987), but neither the unadjusted model nor the medical deconfounder identifies it
as a causal medication. We hypothesize that this is because the cohort of renal failure patients in this
dataset is not large enough for this e�ect to be detected. The other medication, furosemide, which is
a diuretic used to reduce extra fluid in the body, has a delayed e�ect on potassium compared to other
medications with immediate e�ect (e.g., sodium polystyrene sulfonate and regular insulin). Given
this study uses the potassium measurement immediately after medications are prescribed to assess
the treatment e�ect of all medications, there may not be enough time for the e�ect of furosemide to
appear (Mushiyakh et al., 2011; Stason et al., 1966).

Two medications, changing from causal to non-causal after deconfounding, are found to have an
e�ect on potassium level in the literature. One medication is tacrolimus, which is an immunosup-
pressive medication prescribed for patients with organ transplant to lower the risk of organ rejection.
Tacrolimus can increase serum potassium concentration due to reduced e�ciency of urinary potas-
sium excretion (Lee and Kim, 2007). The other medication is sulfamethoxazole, which is an antibiotic
to treat infection. It is found to reduce renal potassium excretion through the competitive inhibition
of epithelial sodium channels when co-administered with trimethoprim (Velazquez et al., 1993;
Antoniou et al., 2010). These two medications are prescribed to patients with relatively complicated
health problems, and thus more scientific study may be necessary to understand the mechanism.
Even though the medical deconfounder does not identify these two medications to be causal but the
unadjusted model does, the medical deconfounder still identifies e�ective medications that are more
consistent with the medical literature (six medications identified as causal only by the unadjusted
model lack evidence for an e�ect on potassium).

4.3. Case study II: Type 2 diabetes mellitus

We next study the medical deconfounder on a patient cohort of type 2 diabetes mellitus. The goal is to
identify medications that causally a�ect hemoglobin A1c (HbA1c). HbA1c measures the percentage
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of a protein called hemoglobin in the bloodstream that is bound by glucose; it is a key indicator of
the average blood glucose over the previous two to three months (Sherwani et al., 2016). In contrast
to the first case study where the treatment e�ect is immediate, HbA1c reflects the long-term e�ect
of medications on regulating blood glucose. This long-term e�ect poses additional challenges in
treatment e�ect assessments.
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Figure 5: Treatment e�ects of medications in the diabetes cohort estimated by the unadjusted model
(left) and the medical deconfounder (right). The medical deconfounder returns causal medications
that are more consistent with the medical literature. The mean, 80% credible interval, and 95%
credible interval of the estimated treatment e�ect are indicated by the circle, the horizontal bar and
the solid line respectively. A medication is determined causal if its 95% credible interval excludes
zero and is marked with "***". A negative treatment e�ect means that the medication down-regulates
HbA1c, and a positive treatment e�ect means the medication up-regulates HbA1c.

Figure 5 shows the treatment e�ects estimated by the medical deconfounder (control for the
substitute confounder) and the unadjusted model (no control).

The medical deconfounder returns three causal medications with positive coe�cients. Among
the three, tacrolimus is the only medication that is causal in both the medical deconfounder and
the unadjusted model. Both of the other two medications only appear significant in the medical
deconfounder. These two medications—amlodipine and hydrochlorothiazide—are medications for
treating high blood pressure, a common comorbidity of diabetes. They have been found to induce
hyperglycemia in non-diabetic patients with essential hypertension in several comparative studies
(Fukao et al., 2011; Cooper-DeHo� et al., 2010). These findings in the literature are consistent with
the positive treatment e�ect estimates by the medical deconfounder. Moreover, both of the causal
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medications are the first line recommended therapies for hypertension, so the finding that the two
medications can cause hyperglycemia are important to guide the treatment decision of hypertension.

In more details, one of the medication amlodipine can induce hyperglycemia likely because it
blocks the calcium channels that inhibits the release of insulin from � cells in the pancreas (Sandozi,
2010). The other medication hydrochlorothiazide is a thiazide diuretics, a class of medications that
are known to promote hyperglycemia and in some cases contribute to the new onset of diabetes
(Cooper-DeHo� et al., 2010; Gress et al., 2000). The exact mechanism is unknown, but it is postulated
to involve worsening of insulin resistance, inhibition of glucose uptake, and decreased insulin release,
among other pathways.

Two medications, acetaminophen and atorvastatin, are identified causal by the unadjusted model,
but are deemed non-causal in the medical deconfounder. We do not find any evidence of causal
relationship between acetaminophen and blood glucose, except a few reports about its interference
on blood glucose sensors (Zyoud et al., 2011; Tierney et al., 2000). Atorvastatin is reported to
increase the incidence of diabetes by decreasing insulin sensitivity and increase ambient glycemia
in hypercholesterolemic patients (Koh et al., 2010). Its estimated e�ect by the unadjusted model is
negatively causal. Although the medical deconfounder is not able to identify this medication to be
causal with positive e�ect, the estimated treatment e�ect is more positive after deconfounding, a
change in the direction consistent with its potential influence on increasing glucose.

The same five medications with a negative e�ect on HbA1c are returned by both models. These
include two well-known medications for treating type 2 diabetes, insulin and metformin (Rojas and
Gomes, 2013; Hirst et al., 2012; Swinnen et al., 2009). Isopropyl alcohol is not a medication but an
ingredient in alcohol-based sanitizers that are commonly used to clean patients’ skin before a blood
test. A few studies were found addressing concerns about the interference of isopropyl alcohol on the
accuracy of blood glucose test, but results are inconsistent among the studies (Mahoney et al., 2011;
Dunning et al., 1994). There exists little literature about aluminum hydroxide and oxycodone on their
association with blood glucose. These could be novel findings for further investigations.

5. Discussion

In this paper, we propose the medical deconfounder, a machine learning algorithm for assessing
treatment e�ects of medications with EHRs. For a cohort of patients, the medical deconfounder
works with multiple relevant medications simultaneously and adjusts for unobserved multi-medication
confounders. The medical deconfounder then identifies medications that causally a�ect the clinical
outcome of interest. We study the medical deconfounder on four datasets, two simulated and two real.
Across datasets, the medical deconfounder improves the treatment e�ect estimates; it also identifies
causal medications that are more consistent with the medical literature than existing methods. These
empirical results show that the medical deconfounder can yield insights around medication e�cacy
and adverse medication reactions.

As venues of future work, the medical deconfounder can be extended to longitudinal settings,
which will allow us to accommodate disease progression and estimate time-dependent treatment
e�ects of the medications. We can also conduct sensitivity analyses of the treatment e�ect estimates
on the probabilistic factor model and the outcome model. These analyses will allow us to understand
how the modeling choices in the medical deconfounder a�ect its treatment e�ect estimates.
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Appendix A. Tables of estimated treatment e�ects from empirical studies

Table A1: Treatment e�ects of medications in the potassium disorder cohort estimated by the
unadjusted model and the medical deconfounder. The mean, lower and upper bound of 95% credible
interval of the estimated coe�cients are included. Causal medications found by each model are in
bold; their 95% credible intervals exclude zero. A positive coe�cient means that the medication
increases serum potassium and vice versa.

2



M������ D�����������

Table A2: Treatment e�ects of medications in the diabetes cohort estimated by the unadjusted model
and the medical deconfounder. The mean, lower and upper bound of 95% credible interval of the
estimated coe�cients are included. Causal medications found by each model are in bold; their 95%
credible intervals exclude zero. A negative coe�cient means that the medication decreases HbA1c
and vice versa.
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