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Abstract

Increasingly large observational datasets from healthcare and social media may allow new
types of causal inference. However, these data are often missing key variables, increasing
the chance of finding spurious causal relationships due to confounding. While methods
exist for causal inference with latent variables in static cases, temporal relationships are
more challenging, as varying time lags make latent causes more difficult to uncover and
approaches often have significantly higher computational complexity. To address this, we
make the key observation that while a variable may be latent in one dataset, it may be
observed in another, or we may have domain knowledge about its effects. We propose a
computationally efficient method that overcomes latent variables by using prior knowledge
to reconstruct data for unobserved variables, while remaining robust to cases when the
knowledge is wrong or does not apply. On simulated data, our approach outperforms the
state of the art with a lower false discovery rate for causal inference. On real-world data
from individuals with Type 1 diabetes, we show that our approach can discover causal
relationships involving unmeasured meals and exercise.

1. Introduction

Causal relationships are why we can successfully predict future events like illness, intervene
to change outcomes such as by reducing risk, and explain why events like a particular per-
son’s illness happened. Health data such as from electronic medical records, intensive care
unit data streams, and patient generated health data are becoming more widespread and
could potentially be used to uncover causes of illness. However, these observational datasets
were not collected for research and, critically, we rarely have control over which variables
are measured. This violates a core assumption of many causal inference methods: no latent
common causes. When a shared cause of two or more variables is absent, we may find spu-
rious relationships between the variable’s effects. This problem is particularly important in
health, as the result of our inferences may inform treatments. False inferences could lead
to ineffective interventions to treat disease that potentially put patients at increased risk.

Due to the fundamental nature of this problem, many solutions have been proposed, and
most augment methods for structure learning in Bayesian networks (Pearl, 2000). However,
these methods do not address the more challenging problem of latent causes in temporal
data. Methods for time series such as tsFCI (Entner and Hoyer, 2010) bring increased
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computational complexity and have not yet been successful with large datasets with many
densely connected variables. One way to improve both computational complexity and accu-
racy is by leveraging prior knowledge, such as information about conditional independence
relationships (Hyttinen et al., 2013). Such prior information has not been leveraged with
temporal relationships, though, where we must also know the timing of the relationships –
bringing further chances for errors.

Yet, even if a variable is latent in one dataset, it may not be latent in every dataset.
Variables may be latent for many reasons, including cost and difficulty of measuring them
(e.g. invasive test), context (e.g. hospitals have different monitoring protocols), and time
(e.g. new measurement technology developed). Further, we may also have an understanding
of the expected effects of a variable based on domain knowledge. However, this knowledge
may be incorrect, or may not apply to the dataset at hand. For example, a variable may
be measured in a population with a particular type of health insurance, who may have dif-
ferent risk factors. Thus it is critical that we can identify when prior information does not
apply. To address this, we propose a new method for causal inference in time series with la-
tent variables that leverages prior knowledge (in the form of causal relationships), discovers
whether it is inconsistent with the data, and uses the applicable information to reconstruct
when latent variables may have occurred. We show that this can be used to identify latent
variables and infer causes with significantly higher accuracy than tsFCI (Entner and Hoyer,
2010) on simulated datasets. We apply the approach to real-world data from individuals
with Type 1 diabetes (T1D), demonstrating that our approach can be used to accurately
infer causes and effects of meals, even when this information is latent.
Technical Significance Causal inference is a core problem in machine learning, but the
strong assumptions of most methods have led to limited applicability in real-world health-
care data. In particular, many methods for learning causal structures from data assume no
latent variables, but this is clearly violated in real-world data. While some methods exist
for inference with latent variables in time series data, they have low accuracy in realistic
settings, and methods that incorporate prior knowledge assume this information is correct.
In contrast, we propose a novel method that exploits prior knowledge to overcome latent
variables, and crucially does not rely on the correctness of this prior knowledge. We show
experimentally that our proposed approach outperforms the state of the art on simulated
data, and can successfully leverage prior information with real-world data.
Clinical Relevance Large amounts of medical data are being collected both in hospitals
and by patients in daily life, but the incomplete nature of these observational data makes
it challenging to apply cutting edge machine learning methods, which often make strong
assumptions that do not hold in health data. Our clinical contributions are two-fold. First,
identifying causes rather than correlations is critical to making effective treatment decisions
and ensuring that interventions are not simply addressing a symptom but rather the un-
derlying issue. Our approach is broadly applicable to many health time series. Second, we
apply our methods to better understand T1D, which affects 9% of the population world-
wide. While data from daily life is important for identifying factors affecting blood glucose
(BG), it is difficult to collect data on meals and exercise longterm. We show how general
knowledge about T1D can be used to overcome cases where these variables are missing,
allowing better use of these data to gain insight into causes of changes in BG.
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2. Related Work

Most related work on causal inference with latent variables is based on Bayesian networks
(BNs) (Pearl, 2000), which use directed acyclic graphs to represent causal relationships,
and probabilistic independence relationships and a set of assumptions to infer structure
from data. One such approach that can handle latent variables is Fast Causal Inference
(FCI) (Spirtes et al., 2000), which first finds partial ancestral graphs (PAGs), then orients
their edges (Zhang, 2008). FCI has exponential time complexity, which limits its applica-
bility to large data. There have been a number of extensions of FCI to improve both its
computational efficiency and applicability: Really Fast Causal Inference (RFCI) (Colombo
et al., 2012) reduces the complexity of FCI by using fewer independence tests; Anytime FCI
(Spirtes, 2001) terminates conditional independences test early to reduce the search space;
and FCI-Max (Raghu et al., 2018) and FCI-Stable (Colombo and Maathuis, 2014) allow a
mix of continuous and discrete datasets. Other approaches constrain the type of BNs that
can be inferred. For example, Zhang (2004) proposed a method to learn hierarchical latent
class models, but this only covers BNs where the structure is a tree and all nodes are latent
except the leaves. Silva et al. (2006) also constrains the structure so that observed variables
are leaves of a tree but with strong assumptions that unmeasured (latent) variables cannot
be effects of observed variables and that dependencies are linear. However, none of these
approaches are applicable to time series data.

Methods that address latent variables (also referred to as latent confounders, or hidden
confounders) in time series often build on both BNs and FCI. BNs have been extended to
include time using Dynamic Bayesian networks (DBNs) (Murphy, 2002), and extensions
have been developed to handle latent variables in DBNs. For example, Song et al. (2009)
proposed Time-Varying DBNs to recover latent networks underlying biological processes.
However, the structures are required to be sparse and to vary smoothly across time. FCI has
been extended to time series with tsFCI (Entner and Hoyer, 2010), which transforms the
time series into random variables, then applies FCI to these variables. Another FCI-based
method combines Granger causality (Granger, 1980) (a method for causal inference in time
series) and FCI, by representing the coefficient matrix with a path diagram before applying
FCI (Eichler, 2010). However, all methods that use FCI share its high computational
complexity and since the order of independence tests matters, errors can propagate. Finally,
Voortman et al. (2010) learns difference-based causal models from time series to avoid latent
confounders, but data are assumed to be generated by differential equations.

Other methods make use of information beyond the data to deal with latent variables.
Hyttinen et al. (2013) incorporate information about conditional independences to learn
cyclic causal structures. While this method allows feedback loops and does not have para-
metric restrictions (e.g. linearity), it relies on the correctness of the conditional indepen-
dence statements. However, even if such a statement is correct in one setting, it may not
apply for example to a different population. Borboudakis and Tsamardinos (2012) pro-
posed a method to handle latent variables using knowledge of existence or non-existence of
causal relationships. That method aims to find structures that are consistent with knowl-
edge, while considering the degree of belief in each piece of prior knowledge. Since beliefs
may be incoherent, this approach was extended to to handle dependent and incoherent
beliefs, however this comes at the expense of exponential time complexity (Borboudakis
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Exercise Hypoglycemia

Food intake

Figure 1: Structure showing effect of latent variables (shaded in grey). The hidden common
cause may lead to a spurious relationship between its effects (dotted edge).

and Tsamardinos, 2013). Cooper and Herskovits (1992) used prior knowledge of the tem-
poral ordering of all variables to handle both missing data and latent variables by using a
greedy search strategy (K2) when inferring a BN. Chen et al. (2008) improved K2 by using
independence tests to reduce the search space. However, both approaches rely on the the
variable ordering, and cannot overcome errors in prior knowledge. Further, they have not
yet been applied to time series data. In contrast, we use prior knowledge (that may be
incorrect) to reduce the search space, and allow that latent and observed relationships can
have arbitrary time lags.

3. Method

We introduce a new approach to causal structure learning for time series with latent vari-
ables, using the idea that prior information can be used to augment data, since latent
variables are not always latent in all datasets. We begin with an overview of the problem
and details on the method we extend, before introducing our approach.

To motivate our approach, consider trying to understand BG in people with T1D. Phys-
ical activity, meals, and stress affect BG, but not all are measured in every study, due to
the time and expense incurred with each extra variable. Thus we may know that moderate
physical activity can lead to hypoglycemia, and that exercise tends to make people eat (e.g.
hunger or overcompensating for calorie burn), but we may only be able to measure BG
and food intake. In that case we may find a paradoxical relationship where eating seems to
lower BG, as shown in Figure 1, because there is a latent common cause of the two observed
variables but one regularly happens before the other. This is what makes the temporal case
more challenging than latent variables in static data. However, this relationship can also
differ between individuals and contexts, such as a competition where adrenaline leads to
hyperglycemia even with moderate activity. The question we aim to address is: can we
leverage such information when available to avoid confounding, while being robust to small
errors in knowledge?

3.1. Background

We are focused on overcoming confounding due to latent variables in causal inference from
time series data, while avoiding high computational complexity. We build on the approach of
Kleinberg (2012), for exact inference of causal relationships and their timing as it is O(N3T )
(N being the number of variables and T the length of time series). Causal relationships
are represented by logical formulas, where each can include arbitrarily complex causes and
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effects, and the cause brings about the effect in some window of time, such as:

m;
≥15,≤30
≥0.7 h, (1)

meaning that moderate exercise m leads to hypoglycemia h in 15 to 30 minutes with prob-
ability 0.7.

To infer causal relationships from time series data, the approach tests user generated
logical formulas, or relationships between pairs of variables up to a specified level of com-
plexity. With time series data and a set of logical formulas representing causal relationships,
the goal is to find which are significant. We focus on the case where all variables are discrete,
so potential causes raise the probability of their effects. Then c is a potential cause of e if
P (e|c) > P (e). To distinguish between spurious factors and genuine causes, the approach
uses a measure of the significance of causes that indicates how much the probability of the
effect changes in the presence of the cause, once all other potential causes are held fixed.
Causal significance is defined as:

εavg(cr−s, e) =

∑
x∈X\c P (e|c ∧ x)− P (e|¬c ∧ x)

|X\c|
, (2)

with relationships of the form c ;
≥r,≤s
≥p e and x ;

≥r′,≤s′
≥p e. P (e|c ∧ x) is the probability

of e in time window [r, s] after both c and x occur. Relationships that are statistically
significant, where ε is greater than a threshold, may be causal. For these to be guaranteed to
be causal, one must assume that there are no hidden common causes and that relationships
are stationary over time.

3.2. Preliminaries

We use uppercase letters to denote sets of variables, and lowercase to denote individual
variables in the set. With a time series of length T and Boolean-valued variables V , the
data can be represented by a T × V matrix, D, where D(i, j) = 1 if vj is true at ti.

We assume a knowledge base K, which is a set of causal relationships of the form in
equation (1). Relationships in K can include variables outside of V , and thus may capture
information about latent common causes. K may be inferred from a different dataset or
may come from domain knowledge. In some cases D may be an incomplete portion of a
dataset, and K relationships learned from the complete portion. We allow that K may be
incorrect, and will aim to discover which relationships do not apply to our dataset.

3.2.1. Assumptions

To guarantee correctness, meaning that inferred causes are genuine and we can remove
all confounding, we must make the following assumptions. First, the true set of causal
relationships underlying time series D for the set of variables V must be stationary. That
is, causes and their significance do not change over time. Second, the data must be faithful
to this structure (as in Spirtes et al. (2000)), so the true set of causes is always entailed by
D. Third, K must include at least one true relationship that includes each latent common
cause of variables in D. Note that this is a weaker assumption than requiring knowledge
of the causal relationship between the latent variable and its observed effects. If the latent
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Figure 2: Illustration of time-windowed graphical model construction.

variable is in the knowledge base, we are able to reconstruct it and will be able to learn
about the relationships with observed effects.

3.3. Causal inference with latent variables

Our approach has three parts: 1) using knowledge from K to reconstruct the time series of
latent variables in a dataset D; 2) identifying errors in K and updating the reconstructed
data; 3) inferring causal structures from the observed and reconstructed dataset.

3.3.1. Reconstruct time series for latent variables

We now discuss how to use K to reconstruct when each latent variable (v /∈ V ) occurred.
We refer to the observed data as D. The output of this step is D′, which augments D with
the recovered time series. As shown in Figure 1, when exercise is latent but we observe BG
and meal times and know how exercise affects both, we can use observations of BG and
meals to identify when exercise was likely to have occurred. Not every instance of a meal
is preceded by exercise, and in general a latent variable may have multiple observed causes
and effects that can be used as evidence. Thus we aim to infer the probability of each latent
variable at each time – rather than assuming it must deterministically precede each effect.

To do this we build on DBNs, with two key updates. First, since exact inference is
NP-hard, when inferring the probability of v, we use only variables in its Markov blanket
(parents, children, and children’s parents). This significantly reduces the number of evidence
variables needed during inference. Second, while DBNs allow temporal relationships they
use discrete lags (e.g. X causing Y in 10 time units, 11 time units, 12 time units and so
on), while we build on methods that use time windows (X causes Y in 10–20 time units).
Thus we augment DBNs with time windows, which further improves efficiency by allowing
multiple edges to be collapsed into one, meaning that a probability is inferred once for the
range rather than for each individual lag. We further improve efficiency by caching results
to avoid redundant computations as we sequentially impute values over time.

We begin by building a DBN, G, using the relationships in K. For each relationship
(c ;

≥r,≤s
≥p e) ∈ K we add an edge c → e to G, but instead of the edge being to e at a

single future time lag t, it is parameterized with the time window [r, s]. Figure 2(b) shows
the unrolled graph, when K is {A → B,A → H,H → D,D → H}. We do not allow
instantaneous relationships, but feedback loops that happen across time can be handled,
just as in DBNs.

6



Using Domain Knowledge to Overcome Latent Variables

For each latent variable v /∈ V , we aim to determine when it may have occurred. To do
this, we infer P (v|MB(v)) at each time t ∈ T , where MB(v) is the Markov blanket of v.
The Markov blanket of v is defined by:

MB(v) = pa(v) ∪ ch(v) ∪
⋃

y∈ch(v)

pa(y) (3)

where pa(v) denotes parents of v and ch(v) denotes children. In Figure 2(b), MB(H)
includes all variables except H. MB(v) is comprised of both observed variables (E), and
latent variables (Y ). Observed variables, evidence in our inference, are set to their actual
values from D. Then, the probability of vt given our observations is:

P (vt|MB(vt)) =

∑
y∈Y P (vt, Y, E)∑
y∈Y P (Y,E)

. (4)

The value of evidence variables E, will depend on the time t. Because of our inclusion
of time, parents of v will have relevant data before t, while children will have relevant data
after. Since the causal relationships have time windows, the specific times used for each
variable will vary. Further, there may be multiple observations of a variable. The value of
an evidence variable e ∈ E is set as follows:

e =


Max(D[e, t− s] . . . D[e, t− r]), if e ∈ pa(v)

Max(D[e, t+ r] . . . D[e, t+ s]), if e ∈ ch(v)

Max(
⋃

yMax(D[y, t+ r] . . . D[y, t+ s]))

where y ∈ (ch(v) ∩ ch(e)), and e ∈ pa(ch(v))

(5)

Thus for parents (causes) of v we test whether they occurred before t in the time window
[r, s] associated with the causal relationship, and conversely test later times for children of
v. For children of v, we iterate over each parent of each ch(v), testing whether it occurred
before each ch(v) within time window [r, s] of the relationship between pa(ch(v)) and ch(v).

We incorporate the state of all other observed variables in v’s Markov blanket, while
accounting for the different time windows of each relationship. Then, we set the value of vt
in the reconstructed time series D′:

D′(v, t) =

{
1 if B (P (vt|MB(vt)))

max(0, D(v, t)) otherwise
(6)

where B (P (vt|MB(vt))) indicates choosing from a Bernoulli distribution. Since there may
be multiple instances of the same values in MB(vt), especially as the length of the time series
grows, we store results for each setting of evidence, so these need not be recomputed each
time, significantly reducing the computational complexity of the approach. Experimentally,
we show how this significantly reduces the number of computations required compared to
the theoretical maximum.

3.3.2. Identify errors in K

In the first step we use prior knowledge to learn when latent variables may have occurred.
However, since we do not assume this knowledge is completely accurate, it is possible that
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if we reconstruct data based on K, some of D′ may be incorrect. Thus, in this step we
aim to identify which relationships in K do not apply. According to our assumptions, the
true set of conditional independence statements will always be entailed by D. Therefore, if
we find that the conditional independence relations entailed by K are different than those
entailed by D, then K has errors. However, since the same set of conditional independences
can correspond to multiple causal structures, an inconsistency only indicates that an error
exists in K. It does not directly yield the correct causal structure. Thus, once we find
inconsistent conditional independencies between D and K, we generate a set of Markov
equivalent causal structures to replace K. We use these Markov equivalent structures to
again reconstruct D′ using the process described above until we find consistent conditional
independences between D′ and K.

After recovering a latent time series using K, we perform conditional independence
tests on the recovered time series D′ to get a set of conditional independence statements
M ′ entailed by D′. For each pair of variables X,Y ∈ D′, we iterate over each possible time
window [r, s] given each possible subset of variables in D′. For each X,Y , we compute the
absolute difference between the following two conditional probabilities given each subset of
variables U ⊂ D′ \ {X,Y } as follows:

φX,Y |U = 1− |P[r,s](X|Y )− P[r,s](X|Y,U)| (7)

We add X qY |U to M ′ when φ is statistically significant (experimentally we use p < 0.05).
Let M be the set of conditional independences entailed by prior knowledge K. If M 6= M ′,
it means K has errors. For each pair X,Y ∈ D′ that is conditionally independent only
in M or in M ′, we generate a set of Markov equivalent structures including variables in
{X,Y }∪MB(X)∪MB(Y ). We regenerate the time series for each of the Markov equivalent
structures using the process described. We restrict ourselves to the Markov blanket of X,Y
to minimize the number of variables to be conditioned on, while capturing key relationships.
We repeat the time series reconstruction procedure discussed in the previous section until
M = M ′. Since the true causal relationships will always be entailed by the data and the set
of Markov equivalent structures generated includes all possible structures, the true structure
that yields M = M ′ will always be found.

3.3.3. Infer causal structures

After augmenting D with the time series of latent variables to obtain D′, we then apply the
causal inference method of Kleinberg (2012) to D′ to learn a set of causal relationships.

3.3.4. Complexity

There are three components of our algorithm: inferring data for the latent variables, iden-
tifying errors, and lastly causal inference. To infer the time series for each latent variable
v, we compute its probability at each timepoint, using evidence from its MB. In the worst
case, the MB includes all variables and all variables are latent. Since inference is done for
each timepoint, the worst case complexity is then O(N3TN) = O(N4T ). However, since
we cache results during inference, it is not necessary to recalculate the probability of each
element of the MB for each vt. Therefore, the overall complexity for inferring the latent
series is � O(N4T ). To identify errors, we need to test each pair of variables, which is
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Figure 3: Structure with latent variable H (shaded circle) and spurious relationships (dot-
ted edges).

O(N2). In the worst case, all relationships in K are wrong and we need to reconstruct
the time series for all variables again, which is then O(N4T ). However, as the number of
latent variables is smaller than the number of observed variables, and we only reconstruct
the variables involved in the Markov blanket, the complexity is < O(N4T ). Finally, causal
inference with N variables and time series of length T is O(N3T ) when testing pairwise
relationships. Therefore, the overall algorithm complexity is < O(N4T ).

4. Experiments

We first evaluate our method and compare it to the state of the art on simulated data
where ground truth is known, demonstrating that our approach can use prior knowledge of
latent variables to avoid confounding. Then, on a real-world T1D dataset we show that by
including prior knowledge our approach is able to make novel inferences that others cannot.

4.1. Simulation

4.1.1. Data

We simulate two types of data: 1) a simple model that has one latent variable that is a
common cause of observed variables and part of a chain, and 2) a range of complex models
with prior knowledge that varies in completeness and correctness.

Simple We simulate a classic case of confounding where two observed variables have
a shared cause that is latent (Figure 3). This case is even more challenging when there
are time windows, and we may incorrectly find B as a cause of C when H is latent. The
latent variable has an observed cause, A, which may also be inferred as an indirect cause
of B and C. The prior knowledge K includes A → H and H → B, and the two causal
relationships’ time windows and probabilities. We simulate 5000 timepoints for both simple
and complex datasets. For simple datasets we add two noise variables (not involved in
causal relationships). All time windows are in [1,5] (simple) or [1,6] (complex) but we test
[1,8] to make the task more difficult. Causal relationships are simulated with probability
0.9.

Complex To test our approach on more realistic data, we generate datasets with 20 to
100 variables. For each number of variables (incrementing by 20) we generate 10 datasets,
for 50 total (5 different variable sizes, 10 datasets for each). The average in/out degree of
the simulated structures ranges from 2.5 (20 vars) to 4.5 (100 vars). Causal relationships
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(a) Kleinberg (2012) result
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Figure 4: Relationships found a) when H is latent, b) after inferring H’s time series with
our approach, and c) by tsFCI. Solid edges are correct inferences, and dotted
are spurious. Edges are annotated with inferred time windows. Ground truth is
shown in Figure 3.

have a randomly generated probability in [0.8,0.9], and we randomly select 20% of variables
to be latent in each structure. Prior knowledge, K is generated as follows. We take the
set of all causal relationships involving latent variables (L) and 1) randomly remove 10%,
2) after removing relationships we randomly add error to 10% of the remaining ones in
either timing (making the window larger or smaller) or probability (increase or decrease),
and 3) add 5% of |L| incorrect relationships. The incorrect relationships could be existing
latent ones that were not previously perturbed, in which case the arrow is reversed (e.g. if
ground truth is A→ B, K will have B → A), or may be randomly generated new (incorrect)
causal relationships. Thus if L has 40 remaining relationships after step 1, K will ultimately
include two totally incorrect causal relationships.

4.1.2. Methods

For our approach, we determine which causal relationships inferred are significant using
p < 0.01 due to the large number of comparisons. We compare our method with tsFCI
using the following settings. We test tsFCI using the RCode TETRADjar package with
inclIE=true (no instantaneous effects). We set the parameter nrep (number of time lags
plus one) based on the ground truth of the data. The evaluation metrics are recall (what
fraction of latent variables are recovered) and false discovery rate (what fraction of inferred
causal relationships are false). A latent variable v is correctly recovered if at least one correct
causal relationship involving v is inferred. To be correct, inferred causal relationships must
also have the correct time window.

4.1.3. Results

Simple structure Results are shown in Figure 4. We first applied the method of (Klein-
berg, 2012) (Figure 4(a)), which finds the indirect relationships between A and H’s children,
as well as an incorrect relationship between B and C, since a core assumption of the method
is violated. As expected, when the common cause is latent and one effect regularly occurs
before the other, a causal relationship between them is inferred. Similarly, tsFCI finds both
the indirect relationships, and the confounded one between B and C. It also identifies
the true relationships between the latent variable and its effects, but identifies the wrong
timing for them. Further, while this structure has only a single latent cause, tsFCI returns
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(a) Recall of latent variables (b) FDR of causal relationships

Figure 5: Comparison of our approach and tsFCI on simulated complex structures.

11 latent variables. In contrast, our approach finds only the direct relationships at their
correct times.
Complex structures Figure 5(a) shows that our approach correctly recovers more latent
variables than tsFCI. Most importantly, as shown in Figure 5(b), our approach has a sig-
nificantly lower FDR than tsFCI for inference of the causal structure. When the causal
structure has 20 variables, our recall of latent variables is 95.0% with a causal inference
FDR of 2.9%. However, for the same case, tsFCI has lower recall (60.5%) and a signif-
icantly higher FDR of 88.7% (Figure 5(b)). As structures become more complex, more
instances of each latent variable may be inferred, making its time series less informative.
While we see that as the structures become more complex (and the number of erroneous
relationships in prior knowledge increases), the recall of latent variables does decrease, we
still recover significantly more than tsFCI and further, the accuracy for causal inference
remains significantly higher. Going from 20 variables to 100 variables, tsFCI recall of latent
variables drops 45.1%, while ours drops 30.4% (to 66.4% compared to 15.4% for tsFCI).
For 20 variables tsFCI has an FDR of 88.7%, while our FDR is 2.9%. Further, the FDR for
tsFCI with 100 variables is 94.1%. The ground truth for these data is 4–20 latent variables,
while tsFCI finds from 33–137 latent variables, which may explain the FDR.
Scalability Our approach retains high accuracy as the number of variables increases. We
further show that the approach scales well in terms of computational complexity. We use
the same set-up as for the complex structures, but vary the length of the time series (2000 to
10000 by steps of 2000; and 200 to 1000 by steps of 100 to show detail). Figure 6(a) shows
how run time scales linearly with the length of the time series. Even with 10000 timepoints
and 100 variables, runtime is about 13min on a desktop computer with 16GB RAM. During
inference of the latent time series, we maintain a table storing computed probabilities, to
avoid redundant computations. Figure 6(b) shows that in practice, with >400 timepoints,
we do only 1% of the theoretical maximum number of probability inferences (avoiding 99%).
With 100 variables and 100 timepoints, we still avoid 80% of the max computations.

4.2. Real-world diabetes data

We now apply our approach to real-world data from individuals with T1D.

11



Using Domain Knowledge to Overcome Latent Variables

(a) Run time for reconstructing latent series (b) Percent of computation avoided with
caching

Figure 6: Evaluating scalability with (a) run time and (b) percentage of computations that
are avoided due to our caching of inference results.

4.2.1. DMITRI dataset

We test our method using the Diabetes Management Integrated Technology Research Ini-
tiative (DMITRI) dataset (Feupe et al., 2013). DMITRI includes data for 17 people (10
male, 7 female) with T1D. The continuously collected data include: glucose (Dexcom 7+
CGM), insulin basal and bolus rate (insulin pump), heart rate (Polar chest strap), activity
(BodyMedia SenseWear, Respironics Actiwatch), temperature (SenseWear), and sleep (Zeo
Personal Sleep Coach). Since DMITRI has a high rate of missing CGM data, we use the
method introduced by Rahman et al. (2015), and previously applied to this dataset, to
impute missing BG values when there is a gap of less than 30min.

4.2.2. Methods

For this experiment, meal information is latent for all subjects, though activity data is
measured. We discretize the data as follows. For blood glucose (BG) we set BG< 70mg/dL
as hypoglycemia, 70 ≤ BG ≤ 150 as euglycemia, and BG> 150 as hyperglycemia. We
discretize the activity data into no exercise (resting), moderate exercise, and intense exer-
cise using both the heart rate (HR) and the METs (metabolic equivalents) recorded by the
SenseWear activity monitor. For METs, each 5-minute interval was discretized using ranges
of under 3.0 (sedentary), 3.0-6.0 (moderate), 6.0-9.0 (vigorous) and above 9.0 (very vigor-
ous). HR is discretized into three zones using age and baseline resting heart rate (HRrest).
Maximum HR (HRmax) is measured as 220-age, and the three zones (zone 1, 2, and 3) of
HR are defined using: X∗(HRmax-HRrest)+HRest, where X ∈ [.5, .85, 1]. We combined
heart rate and METs as follows: resting (METs sedentary and HR in zone 1), moderate
exercise (METs moderate, and HR is in zone 2), and intense exercise (METs vigorous or
very vigorous, and HR in zone 3). For insulin we use presence or absence of a bolus at
each time. Prior knowledge K is that meal can cause hyperglycemia in 15-45min. All other
settings for both our approach and tsFCI are as in the simulated data experiments.
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4.2.3. Results

We find a number of causal relationships involving exercise, meals, and glycemia: moderate
exercise causes a meal in 60-85min, moderate exercise causes hypoglycemia in 70-90min,
and intense exercise causes hyperglycemia in 10-20min. In comparison, tsFCI infers 36
latent variables and only finds hyperglycemia causing itself in 10-15min, and hypoglycemia
causing itself in 5-10min. Our finding about the relationship between intense activity and
hyperglycemia overlaps the 15-30min time window for the same causal relationship identified
in (Heintzman and Kleinberg, 2016), and which is supported by prior work on activity and
glycemia (Riddell and Perkins, 2006). The other two relationships go beyond that inferred
in prior work on this data and the prior knowledge K. They demonstrate how our approach
can be used to make novel inferences about latent variables, and both findings are supported
by the literature. Moderate activity can result in hypoglycemia, and the effect of activity can
persist for a prolonged duration (Basu et al., 2014), making both the inferred relationship
and time window likely. Further, our finding that moderate activity leads to meals but
intense activity does not makes sense as a glucose regulation strategy given the different
effects of each type of activity. In terms of recovering meals, our approach identifies 67
meals in total. We consider a meal plausible if 1) the meal starts before an increase of BG,
and 2) BG increases by 4mg/dL within 30 minutes after the meal starts. The threshold of
4mg/dL is commonly used in works on identifying meal onset from CGM data (Lee et al.,
2009; Xie and Wang, 2015). Using this threshold, our true positive rate (accepted meals out
of all detected) is 0.6, though it is possible others are true meals that simply do not meet
this operational criteria. Overall our results show that prior knowledge can be leveraged to
discover new relationships in observational data.

5. Conclusion

While causal inference from observational data is of increasing importance, it brings new
challenges in missing data and confounding due to latent variables. In this work, we
propose a new approach for causal inference from time series data with latent variables.
By leveraging prior knowledge, which may come from inferences from similar datasets,
other time periods, or domain expertise, we are able to reconstruct the timing of latent
variables and efficiently use this to avoid confounding, even when the prior knowledge
has errors or is incomplete. We demonstrate that this approach can handle canonically
difficult cases (hidden common causes) and more complex structures, with higher accu-
racy than the state of the art. In application to real-world diabetes data, we are able
to infer more causal relationships the state of the art. In future work we aim to ex-
tend this approach to cases where prior knowledge is incomplete. Code is available at:
https://github.com/health-ai-lab/latent-k.
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